Do you want to publish a course? Click here

Ultrabroadband THz/IR upconversion and photovoltaic response in semi-conductor ratchet based upconverter

433   0   0.0 ( 0 )
 Added by Weidong Chu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

An ultrabroadband upconversion device is demonstrated by direct tandem integration of a p-type GaAs/AlxGa1-xAs ratchet photodetector (RP) with a GaAs double heterojunction LED (DH-LED) using the molecular beam epitaxy (MBE). An ultrabroadband photoresponse from terahertz (THz) to near infrared (NIR) region (4-200 THz) was realized that covers a much wider frequency range com-pared with the existing upconversion devices. Broadband IR/THz radiation from 1000 K blackbody is successfully upconverted into NIR photons which can be detected by commercial Si-based device. The normal incidence absorption of the RP simplifies the structure of the RP-LED device and make it more compact compared with the inter-subband transition based upconverters. In addition to the up-conversion function, the proposed upconverter is also tested as photovoltaic detectors in the infrared region (15-200 THz) without an applied bias voltage due to the ratchet effect.



rate research

Read More

149 - Peng Bai , Xiaohong Li , Ning Yang 2021
High performance Terahertz (THz) photodetector has drawn wide attention and got great improvement due to its significant application in biomedical, astrophysics, nondestructive inspection, 6th generation communication system as well as national security application. Here we demonstrate a novel broadband photon-type THz/infrared (IR) photodetector based on the GaAs/AlxGa1-xAs ratchet structure. This kind of photodetector realizes a THz photon-response based on the electrically pumped hot hole injection and overcomes the internal workfunction related spectral response limit. An ultrabroadband photoresponse from 4 THz to 300 THz and a peak responsivity of 50.3 mA/W are realized at negative bias voltage of -1 V. The photodetector also presents a bias-tunable photon-response characteristic due to the asymmetric structure. The ratchet structure also induces an evident photocurrent even at zero bias voltage, which indicates the detector can be regard as a broadband photovoltaic-like detector. The rectification characteristic and high temperature operation possibility of the photodetector are also discussed. This work not only demonstrates a novel ultrabroadband THz/IR photodetector, but also provides a new method to study the light-responsive ratchet.
The intermediate band solar cell (IBSC) and quantum ratchet solar cell (QRSC) have the potential to surpass the efficiency of standard single-junction solar cells by allowing sub-gap photon absorption through states deep inside the band gap. High efficiency IBSC and QRSC devices have not yet been achieved, however, since introducing mid-gap states also increases recombination, which can harm the device. We consider the electronically coupled upconverter (ECUC) solar cell and show that it can achieve the same efficiencies as the QRSC. Although they are equivalent in the detailed balance limit, the ECUC is less sensitive to nonradiative processes, which makes it a more practical implementation for IB devices. We perform a case study of crystalline-silicon based ECUC cells, focusing on hydrogenated amorphous silicon as the upconverter material and highlighting potential dopants for the ECUC. These results illustrate a new path for the development of IB-based devices.
Coupling phase-stable single-cycle terahertz (THz) pulses to scanning tunneling microscope (STM) junctions enables spatio-temporal imaging with femtosecond temporal and r{A}ngstrom spatial resolution. The time resolution achieved in such THz-gated STM is ultimately limited by the sub-cycle temporal variation of the tip-enhanced THz field acting as an ultrafast voltage pulse, and hence by the ability to feed high-frequency, broadband THz pulses into the junction. Here, we report on the coupling of ultrabroadband (1-30 THz) single-cycle THz pulses from a spintronic THz emitter(STE) into a metallic STM junction. We demonstrate broadband phase-resolved detection of the THz voltage transient directly in the STM junction via THz-field-induced modulation of ultrafast photocurrents. Comparison to the unperturbed far-field THz waveform reveals the antenna response of the STM tip. Despite tip-induced low-pass filtering, frequencies up to 15 THz can be detected in the tip-enhanced near-field, resulting in THz transients with a half-cycle period of 115 fs. We further demonstrate simple polarity control of the THz bias via the STE magnetization, and show that up to 2 V THz bias at 1 MHz repetition rate can be achieved in the current setup. Finally, we find a nearly constant THz voltage and waveform over a wide range of tip-sample distances, which by comparison to numerical simulations confirms the quasi-static nature of the THz pulses. Our results demonstrate the suitability of spintronic THz emitters for ultrafast THz-STM with unprecedented bandwidth of the THz bias, and provide insight into the femtosecond response of defined nanoscale junctions.
In this paper, a wideband and low-scattering metasurface in terahertz (THz) is introduced. The proposed coding metasurface is composed of four different graphene square patches in one layer, which has a distinct bias voltage. By optimizing the chemical potential of each patch, the reflection phase and amplitude of a designed element can be controlled in a real-time manner. The chemical potential optimizing approach is a promising method to develop metasurfaces, which can tune the reflection phase, magnitude, or polarization dynamically at different frequencies spectrum. Indeed, by adjusting the metasurface reflection profile, the suggested device can manipulate the reflected wave. Also, this metasurface can reduce reflection energy in the wide-band spectrum. The programmable surface disperses reflected power in various directions in a first frequency band and converts incident electromagnetic waves into heat at second frequency band. The obtained results demonstrate that more than 10 dB reflection reduction can be realized over 1.02 to 2.82 THz under both TE and TM polarized wave incidences. Due to the conformal properties of the graphene monolayer, the stealth feature of the metasurface is well preserved while wrapping around a metallic curved object. This optimization method has an excellent aptitude for phase, magnitude, and polarization control in various beamforming applications at the THz spectrum for high-resolution imaging and stealth technology.
Two-photon photopolymerization delivers prints without support structures and minimizes layering artifacts in a broad range of materials. This volumetric printing approach scans a focused light source throughout the entire volume of a resin vat and takes advantage of the quadratic power dependence of two photon absorption to produce photopolymerization exclusively at the focal point. While this approach has advantages, the widespread adoption of two photon photopolymerization is hindered by the need for expensive ultrafast lasers and extremely slow print speeds. Here we present an analogous quadratic process, triplet-triplet-annihilation-driven 3D printing, that enables volumetric printing at a focal point driven by <4 milliwatt-power continuous wave excitation. To induce photopolymerization deep within a vat, the key advance is the nanoencapsulation of photon upconversion solution within a silica shell decorated with solubilizing polymer ligands. This scalable self-assembly approach allows for scatter-free nanocapsule dispersal in a variety of organic media without leaking the capsule contents. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities multiple orders of magnitude lower than power densities required for two-photon-based 3D printing. The application of upconversion nanocapsules to volumetric 3D printing provides access to the benefits of volumetric printing without the current cost, power, and speed drawbacks. The materials demonstrated here open opportunities for other triplet fusion upconversion-controlled applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا