Do you want to publish a course? Click here

Triplet Fusion Upconversion Nanocapsules for Volumetric 3D Printing

132   0   0.0 ( 0 )
 Added by Tracy Schloemer
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-photon photopolymerization delivers prints without support structures and minimizes layering artifacts in a broad range of materials. This volumetric printing approach scans a focused light source throughout the entire volume of a resin vat and takes advantage of the quadratic power dependence of two photon absorption to produce photopolymerization exclusively at the focal point. While this approach has advantages, the widespread adoption of two photon photopolymerization is hindered by the need for expensive ultrafast lasers and extremely slow print speeds. Here we present an analogous quadratic process, triplet-triplet-annihilation-driven 3D printing, that enables volumetric printing at a focal point driven by <4 milliwatt-power continuous wave excitation. To induce photopolymerization deep within a vat, the key advance is the nanoencapsulation of photon upconversion solution within a silica shell decorated with solubilizing polymer ligands. This scalable self-assembly approach allows for scatter-free nanocapsule dispersal in a variety of organic media without leaking the capsule contents. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities multiple orders of magnitude lower than power densities required for two-photon-based 3D printing. The application of upconversion nanocapsules to volumetric 3D printing provides access to the benefits of volumetric printing without the current cost, power, and speed drawbacks. The materials demonstrated here open opportunities for other triplet fusion upconversion-controlled applications.



rate research

Read More

96 - Laszlo Frazer 2020
Artificial lighting is a widespread technology which consumes large amounts of energy. Triplet-triplet annihilation photochemical upconversion is a method of converting light to a higher frequency. Here, we show theoretically that photochemical upconversion can be applied to Watt-scale lighting, with performance closely approaching the 50% quantum yield upper limit. We describe the dynamic equilibrium of an efficient device consisting of an LED, an upconverting material, and an optical cavity from optical and thermal perspectives.
129 - L. Persano 2018
3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.
Photochemical upconversion is a promising way to boost the efficiency of solar cells using triplet exciton annihilation. Currently, predicting the performance of photochemical upconversion devices is challenging. We present an open source software package which takes experimental parameters as inputs and gives the figure of merit of an upconversion system, enabling theory-driven design of better solar energy devices. We incorporate the statistical distribution of triplet excitons between the sensitizer and the emitter. Using the dynamic quenching effect of the sensitizer on emitter triplet excitons, we show that the optimal sensitizer concentration can be below the sensitizer solubility limit in liquid devices. These theoretical contributions can explain, without use of heavy atom-induced triplet exciton formation or phenyl group rotation, the experimental failure of zinc octaethylporphyrin to effectively sensitize diphenylanthracene, where platinum octaethylporphyrin succeeds. Our predictions indicate a change in direction for device design that will reduce triplet exciton losses.
Here we report the development of high-efficiency microscale GaAs laser power converters, and their successful transfer printing onto silicon substrates, presenting a unique, high power, low-cost and integrated power supply solution for implantable electronics, autonomous systems and internet of things applications. We present 300 {mu}m diameter single-junction GaAs laser power converters and successfully demonstrate the transfer printing of these devices to silicon using a PDMS stamp, achieving optical power conversion efficiencies of 48% and 49% under 35 and 71 W/cm2 808 nm laser illumination respectively. The transferred devices are coated with ITO to increase current spreading and are shown to be capable of handling very high short-circuit current densities up to 70 A/cm2 under 141 W/cm2 illumination intensity (~1400 Suns), while their open circuit voltage reaches 1235 mV, exceeding the values of pre-transfer devices indicating the presence of photon-recycling. These optical power sources could deliver Watts of power to sensors and systems in locations where wired power is not an option, while using a massively parallel, scalable, and low-cost fabrication method for the integration of dissimilar materials and devices.
Surface electronic structures of the photoelectrodes determine the activity and efficiency of the photoelectrochemical water splitting, but the controls of their surface structures and interfacial chemical reactions remain challenging. Here, we use ferroelectric BiFeO3 as a model system to demonstrate an efficient and controllable water splitting reaction by large-area constructing the hydroxyls-bonded surface. The up-shift of band edge positions at this surface enables and enhances the interfacial holes and electrons transfer through the hydroxyl-active-sites, leading to simultaneously enhanced oxygen and hydrogen evolutions. Furthermore, printing of ferroelectric super-domains with microscale checkboard up/down electric fields separates the distribution of reduction/oxidation catalytic sites, enhancing the charge separation and giving rise to an order of magnitude increase of the photocurrent. This large-area printable ferroelectric surface and super-domains offer an alternative platform for controllable and high-efficient photocatalysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا