Detecting what emotions are expressed in text is a well-studied problem in natural language processing. However, research on finer grained emotion analysis such as what causes an emotion is still in its infancy. We present solutions that tackle both emotion recognition and emotion cause detection in a joint fashion. Considering that common-sense knowledge plays an important role in understanding implicitly expressed emotions and the reasons for those emotions, we propose novel methods that combine common-sense knowledge via adapted knowledge models with multi-task learning to perform joint emotion classification and emotion cause tagging. We show performance improvement on both tasks when including common-sense reasoning and a multitask framework. We provide a thorough analysis to gain insights into model performance.
The Emotion Cause Extraction (ECE)} task aims to identify clauses which contain emotion-evoking information for a particular emotion expressed in text. We observe that a widely-used ECE dataset exhibits a bias that the majority of annotated cause clauses are either directly before their associated emotion clauses or are the emotion clauses themselves. Existing models for ECE tend to explore such relative position information and suffer from the dataset bias. To investigate the degree of reliance of existing ECE models on clause relative positions, we propose a novel strategy to generate adversarial examples in which the relative position information is no longer the indicative feature of cause clauses. We test the performance of existing models on such adversarial examples and observe a significant performance drop. To address the dataset bias, we propose a novel graph-based method to explicitly model the emotion triggering paths by leveraging the commonsense knowledge to enhance the semantic dependencies between a candidate clause and an emotion clause. Experimental results show that our proposed approach performs on par with the existing state-of-the-art methods on the original ECE dataset, and is more robust against adversarial attacks compared to existing models.
The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential clause-pairs of emotions and their corresponding causes in a document. Unlike the more well-studied task of Emotion Cause Extraction (ECE), ECPE does not require the emotion clauses to be provided as annotations. Previous works on ECPE have either followed a multi-stage approach where emotion extraction, cause extraction, and pairing are done independently or use complex architectures to resolve its limitations. In this paper, we propose an end-to-end model for the ECPE task. Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset. On this dataset, the proposed method produces significant performance improvements (~6.5 increase in F1 score) over the multi-stage approach and achieves comparable performance to the state-of-the-art methods.
General embeddings like word2vec, GloVe and ELMo have shown a lot of success in natural language tasks. The embeddings are typically extracted from models that are built on general tasks such as skip-gram models and natural language generation. In this paper, we extend the work from natural language understanding to multi-modal architectures that use audio, visual and textual information for machine learning tasks. The embeddings in our network are extracted using the encoder of a transformer model trained using multi-task training. We use person identification and automatic speech recognition as the tasks in our embedding generation framework. We tune and evaluate the embeddings on the downstream task of emotion recognition and demonstrate that on the CMU-MOSEI dataset, the embeddings can be used to improve over previous state of the art results.
Eliciting knowledge contained in language models via prompt-based learning has shown great potential in many natural language processing tasks, such as text classification and generation. Whereas, the applications for more complex tasks such as event extraction are less studied, since the design of prompt is not straightforward due to the complicated types and arguments. In this paper, we explore to elicit the knowledge from pre-trained language models for event trigger detection and argument extraction. Specifically, we present various joint trigger/argument prompt methods, which can elicit more complementary knowledge by modeling the interactions between different triggers or arguments. The experimental results on the benchmark dataset, namely ACE2005, show the great advantages of our proposed approach. In particular, our approach is superior to the recent advanced methods in the few-shot scenario where only a few samples are used for training.
Conversational emotion recognition (CER) has attracted increasing interests in the natural language processing (NLP) community. Different from the vanilla emotion recognition, effective speaker-sensitive utterance representation is one major challenge for CER. In this paper, we exploit speaker identification (SI) as an auxiliary task to enhance the utterance representation in conversations. By this method, we can learn better speaker-aware contextual representations from the additional SI corpus. Experiments on two benchmark datasets demonstrate that the proposed architecture is highly effective for CER, obtaining new state-of-the-art results on two datasets.