Do you want to publish a course? Click here

An End-to-End Network for Emotion-Cause Pair Extraction

107   0   0.0 ( 0 )
 Added by Ashutosh Modi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential clause-pairs of emotions and their corresponding causes in a document. Unlike the more well-studied task of Emotion Cause Extraction (ECE), ECPE does not require the emotion clauses to be provided as annotations. Previous works on ECPE have either followed a multi-stage approach where emotion extraction, cause extraction, and pairing are done independently or use complex architectures to resolve its limitations. In this paper, we propose an end-to-end model for the ECPE task. Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset. On this dataset, the proposed method produces significant performance improvements (~6.5 increase in F1 score) over the multi-stage approach and achieves comparable performance to the state-of-the-art methods.

rate research

Read More

88 - Qixuan Sun , Yaqi Yin , Hong Yu 2021
Emotion-cause pair extraction (ECPE), an emerging task in sentiment analysis, aims at extracting pairs of emotions and their corresponding causes in documents. This is a more challenging problem than emotion cause extraction (ECE), since it requires no emotion signals which are demonstrated as an important role in the ECE task. Existing work follows a two-stage pipeline which identifies emotions and causes at the first step and pairs them at the second step. However, error propagation across steps and pair combining without contextual information limits the effectiveness. Therefore, we propose a Dual-Questioning Attention Network to alleviate these limitations. Specifically, we question candidate emotions and causes to the context independently through attention networks for a contextual and semantical answer. Also, we explore how weighted loss functions in controlling error propagation between steps. Empirical results show that our method performs better than baselines in terms of multiple evaluation metrics. The source code can be obtained at https://github.com/QixuanSun/DQAN.
Existing works on multimodal affective computing tasks, such as emotion recognition, generally adopt a two-phase pipeline, first extracting feature representations for each single modality with hand-crafted algorithms and then performing end-to-end learning with the extracted features. However, the extracted features are fixed and cannot be further fine-tuned on different target tasks, and manually finding feature extraction algorithms does not generalize or scale well to different tasks, which can lead to sub-optimal performance. In this paper, we develop a fully end-to-end model that connects the two phases and optimizes them jointly. In addition, we restructure the current datasets to enable the fully end-to-end training. Furthermore, to reduce the computational overhead brought by the end-to-end model, we introduce a sparse cross-modal attention mechanism for the feature extraction. Experimental results show that our fully end-to-end model significantly surpasses the current state-of-the-art models based on the two-phase pipeline. Moreover, by adding the sparse cross-modal attention, our model can maintain performance with around half the computation in the feature extraction part.
Forms are a common type of document in real life and carry rich information through textual contents and the organizational structure. To realize automatic processing of forms, word grouping and relation extraction are two fundamental and crucial steps after preliminary processing of optical character reader (OCR). Word grouping is to aggregate words that belong to the same semantic entity, and relation extraction is to predict the links between semantic entities. Existing works treat them as two individual tasks, but these two tasks are correlated and can reinforce each other. The grouping process will refine the integrated representation of the corresponding entity, and the linking process will give feedback to the grouping performance. For this purpose, we acquire multimodal features from both textual data and layout information and build an end-to-end model through multitask training to combine word grouping and relation extraction to enhance performance on each task. We validate our proposed method on a real-world, fully-annotated, noisy-scanned benchmark, FUNSD, and extensive experiments demonstrate the effectiveness of our method.
81 - Mingming Sun , Xu Li , Xin Wang 2019
In this paper, we consider the problem of open information extraction (OIE) for extracting entity and relation level intermediate structures from sentences in open-domain. We focus on four types of valuable intermediate structures (Relation, Attribute, Description, and Concept), and propose a unified knowledge expression form, SAOKE, to express them. We publicly release a data set which contains more than forty thousand sentences and the corresponding facts in the SAOKE format labeled by crowd-sourcing. To our knowledge, this is the largest publicly available human labeled data set for open information extraction tasks. Using this labeled SAOKE data set, we train an end-to-end neural model using the sequenceto-sequence paradigm, called Logician, to transform sentences into facts. For each sentence, different to existing algorithms which generally focus on extracting each single fact without concerning other possible facts, Logician performs a global optimization over all possible involved facts, in which facts not only compete with each other to attract the attention of words, but also cooperate to share words. An experimental study on various types of open domain relation extraction tasks reveals the consistent superiority of Logician to other states-of-the-art algorithms. The experiments verify the reasonableness of SAOKE format, the valuableness of SAOKE data set, the effectiveness of the proposed Logician model, and the feasibility of the methodology to apply end-to-end learning paradigm on supervised data sets for the challenging tasks of open information extraction.
Detecting what emotions are expressed in text is a well-studied problem in natural language processing. However, research on finer grained emotion analysis such as what causes an emotion is still in its infancy. We present solutions that tackle both emotion recognition and emotion cause detection in a joint fashion. Considering that common-sense knowledge plays an important role in understanding implicitly expressed emotions and the reasons for those emotions, we propose novel methods that combine common-sense knowledge via adapted knowledge models with multi-task learning to perform joint emotion classification and emotion cause tagging. We show performance improvement on both tasks when including common-sense reasoning and a multitask framework. We provide a thorough analysis to gain insights into model performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا