Do you want to publish a course? Click here

Multi-Task Learning with Auxiliary Speaker Identification for Conversational Emotion Recognition

93   0   0.0 ( 0 )
 Added by Jingye Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Conversational emotion recognition (CER) has attracted increasing interests in the natural language processing (NLP) community. Different from the vanilla emotion recognition, effective speaker-sensitive utterance representation is one major challenge for CER. In this paper, we exploit speaker identification (SI) as an auxiliary task to enhance the utterance representation in conversations. By this method, we can learn better speaker-aware contextual representations from the additional SI corpus. Experiments on two benchmark datasets demonstrate that the proposed architecture is highly effective for CER, obtaining new state-of-the-art results on two datasets.



rate research

Read More

In this paper, we propose a novel auxiliary loss function for target-speaker automatic speech recognition (ASR). Our method automatically extracts and transcribes target speakers utterances from a monaural mixture of multiple speakers speech given a short sample of the target speaker. The proposed auxiliary loss function attempts to additionally maximize interference speaker ASR accuracy during training. This will regularize the network to achieve a better representation for speaker separation, thus achieving better accuracy on the target-speaker ASR. We evaluated our proposed method using two-speaker-mixed speech in various signal-to-interference-ratio conditions. We first built a strong target-speaker ASR baseline based on the state-of-the-art lattice-free maximum mutual information. This baseline achieved a word error rate (WER) of 18.06% on the test set while a normal ASR trained with clean data produced a completely corrupted result (WER of 84.71%). Then, our proposed loss further reduced the WER by 6.6% relative to this strong baseline, achieving a WER of 16.87%. In addition to the accuracy improvement, we also showed that the auxiliary output branch for the proposed loss can even be used for a secondary ASR for interference speakers speech.
Speech emotion recognition is the task of recognizing the speakers emotional state given a recording of their utterance. While most of the current approaches focus on inferring emotion from isolated utterances, we argue that this is not sufficient to achieve conversational emotion recognition (CER) which deals with recognizing emotions in conversations. In this work, we propose several approaches for CER by treating it as a sequence labeling task. We investigated transformer architecture for CER and, compared it with ResNet-34 and BiLSTM architectures in both contextual and context-less scenarios using IEMOCAP corpus. Based on the inner workings of the self-attention mechanism, we proposed DiverseCatAugment (DCA), an augmentation scheme, which improved the transformer model performance by an absolute 3.3% micro-f1 on conversations and 3.6% on isolated utterances. We further enhanced the performance by introducing an interlocutor-aware transformer model where we learn a dictionary of interlocutor index embeddings to exploit diarized conversations.
Studies on emotion recognition (ER) show that combining lexical and acoustic information results in more robust and accurate models. The majority of the studies focus on settings where both modalities are available in training and evaluation. However, in practice, this is not always the case; getting ASR output may represent a bottleneck in a deployment pipeline due to computational complexity or privacy-related constraints. To address this challenge, we study the problem of efficiently combining acoustic and lexical modalities during training while still providing a deployable acoustic model that does not require lexical inputs. We first experiment with multimodal models and two attention mechanisms to assess the extent of the benefits that lexical information can provide. Then, we frame the task as a multi-view learning problem to induce semantic information from a multimodal model into our acoustic-only network using a contrastive loss function. Our multimodal model outperforms the previous state of the art on the USC-IEMOCAP dataset reported on lexical and acoustic information. Additionally, our multi-view-trained acoustic network significantly surpasses models that have been exclusively trained with acoustic features.
General embeddings like word2vec, GloVe and ELMo have shown a lot of success in natural language tasks. The embeddings are typically extracted from models that are built on general tasks such as skip-gram models and natural language generation. In this paper, we extend the work from natural language understanding to multi-modal architectures that use audio, visual and textual information for machine learning tasks. The embeddings in our network are extracted using the encoder of a transformer model trained using multi-task training. We use person identification and automatic speech recognition as the tasks in our embedding generation framework. We tune and evaluate the embeddings on the downstream task of emotion recognition and demonstrate that on the CMU-MOSEI dataset, the embeddings can be used to improve over previous state of the art results.
Emotional state of a speaker is found to have significant effect in speech production, which can deviate speech from that arising from neutral state. This makes identifying speakers with different emotions a challenging task as generally the speaker models are trained using neutral speech. In this work, we propose to overcome this problem by creation of emotion invariant speaker embedding. We learn an extractor network that maps the test embeddings with different emotions obtained using i-vector based system to an emotion invariant space. The resultant test embeddings thus become emotion invariant and thereby compensate the mismatch between various emotional states. The studies are conducted using four different emotion classes from IEMOCAP database. We obtain an absolute improvement of 2.6% in accuracy for speaker identification studies using emotion invariant speaker embedding against average speaker model based framework with different emotions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا