Do you want to publish a course? Click here

Eliciting Knowledge from Language Models for Event Extraction

396   0   0.0 ( 0 )
 Added by Jiaju Lin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Eliciting knowledge contained in language models via prompt-based learning has shown great potential in many natural language processing tasks, such as text classification and generation. Whereas, the applications for more complex tasks such as event extraction are less studied, since the design of prompt is not straightforward due to the complicated types and arguments. In this paper, we explore to elicit the knowledge from pre-trained language models for event trigger detection and argument extraction. Specifically, we present various joint trigger/argument prompt methods, which can elicit more complementary knowledge by modeling the interactions between different triggers or arguments. The experimental results on the benchmark dataset, namely ACE2005, show the great advantages of our proposed approach. In particular, our approach is superior to the recent advanced methods in the few-shot scenario where only a few samples are used for training.



rate research

Read More

Biomedical event extraction is critical in understanding biomolecular interactions described in scientific corpus. One of the main challenges is to identify nested structured events that are associated with non-indicative trigger words. We propose to incorporate domain knowledge from Unified Medical Language System (UMLS) to a pre-trained language model via Graph Edge-conditioned Attention Networks (GEANet) and hierarchical graph representation. To better recognize the trigger words, each sentence is first grounded to a sentence graph based on a jointly modeled hierarchical knowledge graph from UMLS. The grounded graphs are then propagated by GEANet, a novel graph neural networks for enhanced capabilities in inferring complex events. On BioNLP 2011 GENIA Event Extraction task, our approach achieved 1.41% F1 and 3.19% F1 improvements on all events and complex events, respectively. Ablation studies confirm the importance of GEANet and hierarchical KG.
114 - Yujia Qin , Yankai Lin , Jing Yi 2021
Recent explorations of large-scale pre-trained language models (PLMs) such as GPT-3 have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, training a large-scale PLM requires tremendous amounts of computational resources, which is time-consuming and expensive. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring the availability of many existing well-trained PLMs. To this end, we explore the question that how can previously trained PLMs benefit training larger PLMs in future. Specifically, we introduce a novel pre-training framework named knowledge inheritance (KI), which combines both self-learning and teacher-guided learning to efficiently train larger PLMs. Sufficient experimental results demonstrate the feasibility of our KI framework. We also conduct empirical analyses to explore the effects of teacher PLMs pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI can well support lifelong learning and knowledge transfer.
Current event-centric knowledge graphs highly rely on explicit connectives to mine relations between events. Unfortunately, due to the sparsity of connectives, these methods severely undermine the coverage of EventKGs. The lack of high-quality labelled corpora further exacerbates that problem. In this paper, we propose a knowledge projection paradigm for event relation extraction: projecting discourse knowledge to narratives by exploiting the commonalities between them. Specifically, we propose Multi-tier Knowledge Projection Network (MKPNet), which can leverage multi-tier discourse knowledge effectively for event relation extraction. In this way, the labelled data requirement is significantly reduced, and implicit event relations can be effectively extracted. Intrinsic experimental results show that MKPNet achieves the new state-of-the-art performance, and extrinsic experimental results verify the value of the extracted event relations.
Detecting what emotions are expressed in text is a well-studied problem in natural language processing. However, research on finer grained emotion analysis such as what causes an emotion is still in its infancy. We present solutions that tackle both emotion recognition and emotion cause detection in a joint fashion. Considering that common-sense knowledge plays an important role in understanding implicitly expressed emotions and the reasons for those emotions, we propose novel methods that combine common-sense knowledge via adapted knowledge models with multi-task learning to perform joint emotion classification and emotion cause tagging. We show performance improvement on both tasks when including common-sense reasoning and a multitask framework. We provide a thorough analysis to gain insights into model performance.
Joint event and causality extraction is a challenging yet essential task in information retrieval and data mining. Recently, pre-trained language models (e.g., BERT) yield state-of-the-art results and dominate in a variety of NLP tasks. However, these models are incapable of imposing external knowledge in domain-specific extraction. Considering the prior knowledge of frequent n-grams that represent cause/effect events may benefit both event and causality extraction, in this paper, we propose convolutional knowledge infusion for frequent n-grams with different windows of length within a joint extraction framework. Knowledge infusion during convolutional filter initialization not only helps the model capture both intra-event (i.e., features in an event cluster) and inter-event (i.e., associations across event clusters) features but also boosts training convergence. Experimental results on the benchmark datasets show that our model significantly outperforms the strong BERT+CSNN baseline.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا