No Arabic abstract
General embeddings like word2vec, GloVe and ELMo have shown a lot of success in natural language tasks. The embeddings are typically extracted from models that are built on general tasks such as skip-gram models and natural language generation. In this paper, we extend the work from natural language understanding to multi-modal architectures that use audio, visual and textual information for machine learning tasks. The embeddings in our network are extracted using the encoder of a transformer model trained using multi-task training. We use person identification and automatic speech recognition as the tasks in our embedding generation framework. We tune and evaluate the embeddings on the downstream task of emotion recognition and demonstrate that on the CMU-MOSEI dataset, the embeddings can be used to improve over previous state of the art results.
Conversational emotion recognition (CER) has attracted increasing interests in the natural language processing (NLP) community. Different from the vanilla emotion recognition, effective speaker-sensitive utterance representation is one major challenge for CER. In this paper, we exploit speaker identification (SI) as an auxiliary task to enhance the utterance representation in conversations. By this method, we can learn better speaker-aware contextual representations from the additional SI corpus. Experiments on two benchmark datasets demonstrate that the proposed architecture is highly effective for CER, obtaining new state-of-the-art results on two datasets.
In emotion recognition, it is difficult to recognize humans emotional states using just a single modality. Besides, the annotation of physiological emotional data is particularly expensive. These two aspects make the building of effective emotion recognition model challenging. In this paper, we first build a multi-view deep generative model to simulate the generative process of multi-modality emotional data. By imposing a mixture of Gaussians assumption on the posterior approximation of the latent variables, our model can learn the shared deep representation from multiple modalities. To solve the labeled-data-scarcity problem, we further extend our multi-view model to semi-supervised learning scenario by casting the semi-supervised classification problem as a specialized missing data imputation task. Our semi-supervised multi-view deep generative framework can leverage both labeled and unlabeled data from multiple modalities, where the weight factor for each modality can be learned automatically. Compared with previous emotion recognition methods, our method is more robust and flexible. The experiments conducted on two real multi-modal emotion datasets have demonstrated the superiority of our framework over a number of competitors.
Emotion recognition is a challenging task due to limited availability of in-the-wild labeled datasets. Self-supervised learning has shown improvements on tasks with limited labeled datasets in domains like speech and natural language. Models such as BERT learn to incorporate context in word embeddings, which translates to improved performance in downstream tasks like question answering. In this work, we extend self-supervised training to multi-modal applications. We learn multi-modal representations using a transformer trained on the masked language modeling task with audio, visual and text features. This model is fine-tuned on the downstream task of emotion recognition. Our results on the CMU-MOSEI dataset show that this pre-training technique can improve the emotion recognition performance by up to 3% compared to the baseline.
Emotion represents an essential aspect of human speech that is manifested in speech prosody. Speech, visual, and textual cues are complementary in human communication. In this paper, we study a hybrid fusion method, referred to as multi-modal attention network (MMAN) to make use of visual and textual cues in speech emotion recognition. We propose a novel multi-modal attention mechanism, cLSTM-MMA, which facilitates the attention across three modalities and selectively fuse the information. cLSTM-MMA is fused with other uni-modal sub-networks in the late fusion. The experiments show that speech emotion recognition benefits significantly from visual and textual cues, and the proposed cLSTM-MMA alone is as competitive as other fusion methods in terms of accuracy, but with a much more compact network structure. The proposed hybrid network MMAN achieves state-of-the-art performance on IEMOCAP database for emotion recognition.
Despite the increasing research interest in end-to-end learning systems for speech emotion recognition, conventional systems either suffer from the overfitting due in part to the limited training data, or do not explicitly consider the different contributions of automatically learnt representations for a specific task. In this contribution, we propose a novel end-to-end framework which is enhanced by learning other auxiliary tasks and an attention mechanism. That is, we jointly train an end-to-end network with several different but related emotion prediction tasks, i.e., arousal, valence, and dominance predictions, to extract more robust representations shared among various tasks than traditional systems with the hope that it is able to relieve the overfitting problem. Meanwhile, an attention layer is implemented on top of the layers for each task, with the aim to capture the contribution distribution of different segment parts for each individual task. To evaluate the effectiveness of the proposed system, we conducted a set of experiments on the widely used database IEMOCAP. The empirical results show that the proposed systems significantly outperform corresponding baseline systems.