No Arabic abstract
Understanding product attributes plays an important role in improving online shopping experience for customers and serves as an integral part for constructing a product knowledge graph. Most existing methods focus on attribute extraction from text description or utilize visual information from product images such as shape and color. Compared to the inputs considered in prior works, a product image in fact contains more information, represented by a rich mixture of words and visual clues with a layout carefully designed to impress customers. This work proposes a more inclusive framework that fully utilizes these different modalities for attribute extraction. Inspired by recent works in visual question answering, we use a transformer based sequence to sequence model to fuse representations of product text, Optical Character Recognition (OCR) tokens and visual objects detected in the product image. The framework is further extended with the capability to extract attribute value across multiple product categories with a single model, by training the decoder to predict both product category and attribute value and conditioning its output on product category. The model provides a unified attribute extraction solution desirable at an e-commerce platform that offers numerous product categories with a diverse body of product attributes. We evaluated the model on two product attributes, one with many possible values and one with a small set of possible values, over 14 product categories and found the model could achieve 15% gain on the Recall and 10% gain on the F1 score compared to existing methods using text-only features.
Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product recommendations, and product retrieval. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we propose a multimodal method to jointly predict product attributes and extract values from textual product descriptions with the help of the product images. We argue that product attributes and values are highly correlated, e.g., it will be easier to extract the values on condition that the product attributes are given. Thus, we jointly model the attribute prediction and value extraction tasks from multiple aspects towards the interactions between attributes and values. Moreover, product images have distinct effects on our tasks for different product attributes and values. Thus, we selectively draw useful visual information from product images to enhance our model. We annotate a multimodal product attribute value dataset that contains 87,194 instances, and the experimental results on this dataset demonstrate that explicitly modeling the relationship between attributes and values facilitates our method to establish the correspondence between them, and selectively utilizing visual product information is necessary for the task. Our code and dataset will be released to the public.
With the rapid growth of e-Commerce, online product search has emerged as a popular and effective paradigm for customers to find desired products and engage in online shopping. However, there is still a big gap between the products that customers really desire to purchase and relevance of products that are suggested in response to a query from the customer. In this paper, we propose a robust way of predicting relevance scores given a search query and a product, using techniques involving machine learning, natural language processing and information retrieval. We compare conventional information retrieval models such as BM25 and Indri with deep learning models such as word2vec, sentence2vec and paragraph2vec. We share some of our insights and findings from our experiments.
We study the problem of recommending relevant products to users in relatively resource-scarce markets by leveraging data from similar, richer in resource auxiliary markets. We hypothesize that data from one market can be used to improve performance in another. Only a few studies have been conducted in this area, partly due to the lack of publicly available experimental data. To this end, we collect and release XMarket, a large dataset covering 18 local markets on 16 different product categories, featuring 52.5 million user-item interactions. We introduce and formalize the problem of cross-market product recommendation, i.e., market adaptation. We explore different market-adaptation techniques inspired by state-of-the-art domain-adaptation and meta-learning approaches and propose a novel neural approach for market adaptation, named FOREC. Our model follows a three-step procedure -- pre-training, forking, and fine-tuning -- in order to fully utilize the data from an auxiliary market as well as the target market. We conduct extensive experiments studying the impact of market adaptation on different pairs of markets. Our proposed approach demonstrates robust effectiveness, consistently improving the performance on target markets compared to competitive baselines selected for our analysis. In particular, FOREC improves on average 24% and up to 50% in terms of nDCG@10, compared to the NMF baseline. Our analysis and experiments suggest specific future directions in this research area. We release our data and code for academic purposes.
Translating e-commercial product descriptions, a.k.a product-oriented machine translation (PMT), is essential to serve e-shoppers all over the world. However, due to the domain specialty, the PMT task is more challenging than traditional machine translation problems. Firstly, there are many specialized jargons in the product description, which are ambiguous to translate without the product image. Secondly, product descriptions are related to the image in more complicated ways than standard image descriptions, involving various visual aspects such as objects, shapes, colors or even subjective styles. Moreover, existing PMT datasets are small in scale to support the research. In this paper, we first construct a large-scale bilingual product description dataset called Fashion-MMT, which contains over 114k noisy and 40k manually cleaned description translations with multiple product images. To effectively learn semantic alignments among product images and bilingual texts in translation, we design a unified product-oriented cross-modal cross-lingual model (upoc~) for pre-training and fine-tuning. Experiments on the Fashion-MMT and Multi30k datasets show that our model significantly outperforms the state-of-the-art models even pre-trained on the same dataset. It is also shown to benefit more from large-scale noisy data to improve the translation quality. We will release the dataset and codes at https://github.com/syuqings/Fashion-MMT.
Recent advancements in the area of Computer Vision with state-of-art Neural Networks has given a boost to Optical Character Recognition (OCR) accuracies. However, extracting characters/text alone is often insufficient for relevant information extraction as documents also have a visual structure that is not captured by OCR. Extracting information from tables, charts, footnotes, boxes, headings and retrieving the corresponding structured representation for the document remains a challenge and finds application in a large number of real-world use cases. In this paper, we propose a novel enterprise based end-to-end framework called DeepReader which facilitates information extraction from document images via identification of visual entities and populating a meta relational model across different entities in the document image. The model schema allows for an easy to understand abstraction of the entities detected by the deep vision models and the relationships between them. DeepReader has a suite of state-of-the-art vision algorithms which are applied to recognize handwritten and printed text, eliminate noisy effects, identify the type of documents and detect visual entities like tables, lines and boxes. Deep Reader maps the extracted entities into a rich relational schema so as to capture all the relevant relationships between entities (words, textboxes, lines etc) detected in the document. Relevant information and fields can then be extracted from the document by writing SQL queries on top of the relationship tables. A natural language based interface is added on top of the relationship schema so that a non-technical user, specifying the queries in natural language, can fetch the information with minimal effort. In this paper, we also demonstrate many different capabilities of Deep Reader and report results on a real-world use case.