Do you want to publish a course? Click here

Deep Reader: Information extraction from Document images via relation extraction and Natural Language

87   0   0.0 ( 0 )
 Added by Arindam Chowdhury
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Recent advancements in the area of Computer Vision with state-of-art Neural Networks has given a boost to Optical Character Recognition (OCR) accuracies. However, extracting characters/text alone is often insufficient for relevant information extraction as documents also have a visual structure that is not captured by OCR. Extracting information from tables, charts, footnotes, boxes, headings and retrieving the corresponding structured representation for the document remains a challenge and finds application in a large number of real-world use cases. In this paper, we propose a novel enterprise based end-to-end framework called DeepReader which facilitates information extraction from document images via identification of visual entities and populating a meta relational model across different entities in the document image. The model schema allows for an easy to understand abstraction of the entities detected by the deep vision models and the relationships between them. DeepReader has a suite of state-of-the-art vision algorithms which are applied to recognize handwritten and printed text, eliminate noisy effects, identify the type of documents and detect visual entities like tables, lines and boxes. Deep Reader maps the extracted entities into a rich relational schema so as to capture all the relevant relationships between entities (words, textboxes, lines etc) detected in the document. Relevant information and fields can then be extracted from the document by writing SQL queries on top of the relationship tables. A natural language based interface is added on top of the relationship schema so that a non-technical user, specifying the queries in natural language, can fetch the information with minimal effort. In this paper, we also demonstrate many different capabilities of Deep Reader and report results on a real-world use case.



rate research

Read More

We present Pix2Prof, a deep learning model that can eliminate any manual steps taken when extracting galaxy profiles. We argue that a galaxy profile of any sort is conceptually similar to a natural language image caption. This idea allows us to leverage image captioning methods from the field of natural language processing, and so we design Pix2Prof as a float sequence captioning model suitable for galaxy profile inference. We demonstrate the technique by approximating a galaxy surface brightness (SB) profile fitting method that contains several manual steps. Pix2Prof processes $sim$1 image per second on an Intel Xeon E5 2650 v3 CPU, improving on the speed of the manual interactive method by more than two orders of magnitude. Crucially, Pix2Prof requires no manual interaction, and since galaxy profile estimation is an embarrassingly parallel problem, we can further increase the throughput by running many Pix2Prof instances simultaneously. In perspective, Pix2Prof would take under an hour to infer profiles for $10^5$ galaxies on a single NVIDIA DGX-2 system. A single human expert would take approximately two years to complete the same task. Automated methodology such as this will accelerate the analysis of the next generation of large area sky surveys expected to yield hundreds of millions of targets. In such instances, all manual approaches -- even those involving a large number of experts -- will be impractical.
We present document domain randomization (DDR), the first successful transfer of convolutional neural networks (CNNs) trained only on graphically rendered pseudo-paper pages to real-world document segmentation. DDR renders pseudo-document pages by modeling randomized textual and non-textual contents of interest, with user-defined layout and font styles to support joint learning of fine-grained classes. We demonstrate competitive results using our DDR approach to extract nine document classes from the benchmark CS-150 and papers published in two domains, namely annual meetings of Association for Computational Linguistics (ACL) and IEEE Visualization (VIS). We compare DDR to conditions of style mismatch, fewer or more noisy samples that are more easily obtained in the real world. We show that high-fidelity semantic information is not necessary to label semantic classes but style mismatch between train and test can lower model accuracy. Using smaller training samples had a slightly detrimental effect. Finally, network models still achieved high test accuracy when correct labels are diluted towards confusing labels; this behavior hold across several classes.
156 - Wang Xu , Kehai Chen , Tiejun Zhao 2020
In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past several years. However, the learned graph representation universally models relation information between all entity pairs regardless of whether there are relationships between these entity pairs. Thus, those entity pairs without relationships disperse the attention of the encoder-classifier DocRE for ones with relationships, which may further hind the improvement of DocRE. To alleviate this issue, we propose a novel encoder-classifier-reconstructor model for DocRE. The reconstructor manages to reconstruct the ground-truth path dependencies from the graph representation, to ensure that the proposed DocRE model pays more attention to encode entity pairs with relationships in the training. Furthermore, the reconstructor is regarded as a relationship indicator to assist relation classification in the inference, which can further improve the performance of DocRE model. Experimental results on a large-scale DocRE dataset show that the proposed model can significantly improve the accuracy of relation extraction on a strong heterogeneous graph-based baseline.
Relation extraction aims to extract relational facts from sentences. Previous models mainly rely on manually labeled datasets, seed instances or human-crafted patterns, and distant supervision. However, the human annotation is expensive, while human-crafted patterns suffer from semantic drift and distant supervision samples are usually noisy. Domain adaptation methods enable leveraging labeled data from a different but related domain. However, different domains usually have various textual relation descriptions and different label space (the source label space is usually a superset of the target label space). To solve these problems, we propose a novel model of relation-gated adversarial learning for relation extraction, which extends the adversarial based domain adaptation. Experimental results have shown that the proposed approach outperforms previous domain adaptation methods regarding partial domain adaptation and can improve the accuracy of distance supervised relation extraction through fine-tuning.
190 - Yiqing Xie , Jiaming Shen , Sha Li 2021
Document-level relation extraction (DocRE) aims at extracting the semantic relations among entity pairs in a document. In DocRE, a subset of the sentences in a document, called the evidence sentences, might be sufficient for predicting the relation between a specific entity pair. To make better use of the evidence sentences, in this paper, we propose a three-stage evidence-enhanced DocRE framework consisting of joint relation and evidence extraction, evidence-centered relation extraction (RE), and fusion of extraction results. We first jointly train an RE model with a simple and memory-efficient evidence extraction model. Then, we construct pseudo documents based on the extracted evidence sentences and run the RE model again. Finally, we fuse the extraction results of the first two stages using a blending layer and make a final prediction. Extensive experiments show that our proposed framework achieves state-of-the-art performance on the DocRED dataset, outperforming the second-best method by 0.76/0.82 Ign F1/F1. In particular, our method significantly improves the performance on inter-sentence relations by 1.23 Inter F1.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا