Do you want to publish a course? Click here

Cross-Market Product Recommendation

79   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the problem of recommending relevant products to users in relatively resource-scarce markets by leveraging data from similar, richer in resource auxiliary markets. We hypothesize that data from one market can be used to improve performance in another. Only a few studies have been conducted in this area, partly due to the lack of publicly available experimental data. To this end, we collect and release XMarket, a large dataset covering 18 local markets on 16 different product categories, featuring 52.5 million user-item interactions. We introduce and formalize the problem of cross-market product recommendation, i.e., market adaptation. We explore different market-adaptation techniques inspired by state-of-the-art domain-adaptation and meta-learning approaches and propose a novel neural approach for market adaptation, named FOREC. Our model follows a three-step procedure -- pre-training, forking, and fine-tuning -- in order to fully utilize the data from an auxiliary market as well as the target market. We conduct extensive experiments studying the impact of market adaptation on different pairs of markets. Our proposed approach demonstrates robust effectiveness, consistently improving the performance on target markets compared to competitive baselines selected for our analysis. In particular, FOREC improves on average 24% and up to 50% in terms of nDCG@10, compared to the NMF baseline. Our analysis and experiments suggest specific future directions in this research area. We release our data and code for academic purposes.

rate research

Read More

To address the long-standing data sparsity problem in recommender systems (RSs), cross-domain recommendation (CDR) has been proposed to leverage the relatively richer information from a richer domain to improve the recommendation performance in a sparser domain. Although CDR has been extensively studied in recent years, there is a lack of a systematic review of the existing CDR approaches. To fill this gap, in this paper, we provide a comprehensive review of existing CDR approaches, including challenges, research progress, and future directions. Specifically, we first summarize existing CDR approaches into four types, including single-target CDR, multi-domain recommendation, dual-target CDR, and multi-target CDR. We then present the definitions and challenges of these CDR approaches. Next, we propose a full-view categorization and new taxonomies on these approaches and report their research progress in detail. In the end, we share several promising research directions in CDR.
Recently, a new form of online shopping becomes more and more popular, which combines live streaming with E-Commerce activity. The streamers introduce products and interact with their audiences, and hence greatly improve the performance of selling products. Despite of the successful applications in industries, the live stream E-commerce has not been well studied in the data science community. To fill this gap, we investigate this brand-new scenario and collect a real-world Live Stream E-Commerce (LSEC) dataset. Different from conventional E-commerce activities, the streamers play a pivotal role in the LSEC events. Hence, the key is to make full use of rich interaction information among streamers, users, and products. We first conduct data analysis on the tripartite interaction data and quantify the streamers influence on users purchase behavior. Based on the analysis results, we model the tripartite information as a heterogeneous graph, which can be decomposed to multiple bipartite graphs in order to better capture the influence. We propose a novel Live Stream E-Commerce Graph Neural Network framework (LSEC-GNN) to learn the node representations of each bipartite graph, and further design a multi-task learning approach to improve product recommendation. Extensive experiments on two real-world datasets with different scales show that our method can significantly outperform various baseline approaches.
Cold-start problems are enormous challenges in practical recommender systems. One promising solution for this problem is cross-domain recommendation (CDR) which leverages rich information from an auxiliary (source) domain to improve the performance of recommender system in the target domain. In these CDR approaches, the family of Embedding and Mapping methods for CDR (EMCDR) is very effective, which explicitly learn a mapping function from source embeddings to target embeddings with overlapping users. However, these approaches suffer from one serious problem: the mapping function is only learned on limited overlapping users, and the function would be biased to the limited overlapping users, which leads to unsatisfying generalization ability and degrades the performance on cold-start users in the target domain. With the advantage of meta learning which has good generalization ability to novel tasks, we propose a transfer-meta framework for CDR (TMCDR) which has a transfer stage and a meta stage. In the transfer (pre-training) stage, a source model and a target model are trained on source and target domains, respectively. In the meta stage, a task-oriented meta network is learned to implicitly transform the user embedding in the source domain to the target feature space. In addition, the TMCDR is a general framework that can be applied upon various base models, e.g., MF, BPR, CML. By utilizing data from Amazon and Douban, we conduct extensive experiments on 6 cross-domain tasks to demonstrate the superior performance and compatibility of TMCDR.
Building a recommendation system that serves billions of users on daily basis is a challenging problem, as the system needs to make astronomical number of predictions per second based on real-time user behaviors with O(1) time complexity. Such kind of large scale recommendation systems usually rely heavily on pre-built index of products to speedup the recommendation service so that online user waiting time is un-noticeable. One important indexing structure is the product-product index, where one can retrieval a list of ranked products given a seed product. The index can be viewed as a weighted product-product graph. In this paper, we present our novel technologies to efficiently build such kind of indexed product graphs. In particular, we propose the Swing algorithm to capture the substitute relationships between products, which can utilize the substructures of user-item click bi-partitive graph. Then we propose the Surprise algorithm for the modeling of complementary product relationships, which utilizes product category information and solves the sparsity problem of user co-purchasing graph via clustering technique. Base on these two approaches, we can build the basis product graph for recommendation in Taobao. The approaches are evaluated comprehensively with both offline and online experiments, and the results demonstrate the effectiveness and efficiency of the work.
Recommender systems take inputs from user history, use an internal ranking algorithm to generate results and possibly optimize this ranking based on feedback. However, often the recommender system is unaware of the actual intent of the user and simply provides recommendations dynamically without properly understanding the thought process of the user. An intelligent recommender system is not only useful for the user but also for businesses which want to learn the tendencies of their users. Finding out tendencies or intents of a user is a difficult problem to solve. Keeping this in mind, we sought out to create an intelligent system which will keep track of the users activity on a web-application as well as determine the intent of the user in each session. We devised a way to encode the users activity through the sessions. Then, we have represented the information seen by the user in a high dimensional format which is reduced to lower dimensions using tensor factorization techniques. The aspect of intent awareness (or scoring) is dealt with at this stage. Finally, combining the user activity data with the contextual information gives the recommendation score. The final recommendations are then ranked using filtering and collaborative recommendation techniques to show the top-k recommendations to the user. A provision for feedback is also envisioned in the current system which informs the model to update the various weights in the recommender system. Our overall model aims to combine both frequency-based and context-based recommendation systems and quantify the intent of a user to provide better recommendations. We ran experiments on real-world timestamped user activity data, in the setting of recommending reports to the users of a business analytics tool and the results are better than the baselines. We also tuned certain aspects of our model to arrive at optimized results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا