Do you want to publish a course? Click here

N-type doping of LPCVD-grown b{eta}-Ga2O3 thin films using solid-source germanium

118   0   0.0 ( 0 )
 Added by Praneeth Ranga
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the growth and characterization of Ge-doped b{eta}-Ga2O3 thin films using a solid germanium source. b{eta}-Ga2O3 thin films were grown using a low-pressure chemical vapor deposition (LPCVD) reactor with either an oxygen or gallium delivery tube. Films were grown on 6 degree offcut sapphire and (010) b{eta}-Ga2O3 substrates with growth rates between 0.5 - 22 {mu}m/hr. By controlling the germanium vapor pressure, a wide range of Hall carrier concentrations between 10^17 - 10^19 cm-3 were achieved. Low-temperature Hall data revealed a difference in donor incorporation depending on the reactor configuration. At low growth rates, germanium occupied a single donor energy level between 8 - 10 meV. At higher growth rates, germanium doping predominantly results in a deeper donor energy level at 85 meV. This work shows the effect of reactor design and growth regime on the kinetics of impurity incorporation. Studying donor incorporation in b{eta}-Ga2O3 is important for the design of high-power electronic devices.



rate research

Read More

High-quality dielectric-semiconductor interfaces are critical for reliable high-performance transistors. We report the in-situ metalorganic chemical vapor deposition (MOCVD) of Al$_2$O$_3$ on $beta$-Ga$_2$O$_3$ as a potentially better alternative to the most commonly used atomic layer deposition (ALD). The growth of Al$_2$O$_3$ is performed in the same reactor as Ga$_2$O$_3$ using trimethylaluminum and O$_2$ as precursors without breaking the vacuum at a growth temperature of 600 $^0$C. The fast and slow near interface traps at the Al$_2$O$_3$/ $beta$-Ga$_2$O$_3$ interface are identified and quantified using stressed capacitance-voltage (CV) measurements on metal oxide semiconductor capacitor (MOSCAP) structures. The density of shallow and deep level initially filled traps (D$_{it}$) are measured using ultra-violet (UV) assisted CV technique. The average D$_{it}$ for the MOSCAP is determined to be 7.8 $times$ 10$^{11}$ cm$^{-2}$eV$^{-1}$. The conduction band offset of the Al$_2$O$_3$/ Ga$_2$O$_3$ interface is also determined from CV measurements and found out to be 1.7 eV which is in close agreement with the existing literature reports of ALD Al$_2$O$_3$/ Ga$_2$O$_3$ interface. The current-voltage characteristics are also analyzed and the average breakdown field is extracted to be approximately 5.8 MV/cm. This in-situ Al$_2$O$_3$ dielectric on $beta$-Ga$_2$O$_3$ with improved dielectric properties can enable Ga$_2$O$_3$-based high performance devices.
By combining temperature-dependent resistivity and Hall effect measurements, we investigate donor state energy in Si-doped b{eta}-Ga2O3 films grown using metal-organic vapor phase epitaxy (MOVPE). High magnetic field Hall effect measurements (H = +/-90 kOe) showed non-linear Hall resistance for T < 150 K revealing two-band conduction. Further analyses revealed carrier freeze-out characteristics in both bands yielding donor state energies of ~ 33.7 and ~ 45.6 meV. The former is consistent with the donor energy of Si in b{eta}-Ga2O3 whereas the latter suggests a residual donor state, likely associated with a DX center. This study provides a critical insight into the impurity band conduction and the defect energy states in b{eta}-Ga2O3 using high-field magnetotransport measurements.
Gallium oxide epitaxial layers grown on native substrates and basal plane sapphire were characherized by X-ray phtotelectron and optical reflectance spectroscopies. The XPS electronic structure mapping was coupled to Density functional theory calculations.
Tin monosulfide (SnS) usually exhibits p-type conduction due to the low formation enthalpy of acceptor-type defects, and as a result n-type SnS thin films have never been obtained. This study realizes n-type conduction in SnS thin films for the first time by using RF-magnetron sputtering with Cl doping and sulfur plasma source during deposition. N-type SnS thin films are obtained at all the substrate temperatures employed in this study (221-341 C), exhibiting carrier concentrations and Hall mobilities of ~2 x 10 18 cm-3 and 0.1-1 cm V-1s-1, respectively. The films prepared without sulfur plasma source, on the other hand, exhibit p-type conduction despite containing a comparable amount of Cl donors. This is likely due to a significant amount of acceptor-type defects originating from sulfur deficiency in p-type films, which appears as a broad optical absorption within the band gap. The demonstration of n-type SnS thin films in this study is a breakthrough for the realization of SnS homojunction solar cells, which are expected to have a higher conversion efficiency than the conventional heterojunction SnS solar cells.
Investigating lateral electrical transport in p-type thin film chalcogenides is important to evaluate their potential for field-effect transistors (FETs) and phase-change memory applications. For instance, p-type FETs with sputtered materials at low temperature (<= 250 C) could play a role in flexible electronics or back-end-of-line (BEOL) silicon-compatible processes. Here, we explore lateral transport in chalcogenide films (Sb2Te3, Ge2Sb2Te5, Ge4Sb6Te7) and multilayers, with Hall measurements (in <= 50 nm thin films) and with p-type transistors (in <= 5 nm ultrathin films). The highest Hall mobilities are measured for Sb2Te3/GeTe superlattices (~18 cm2/V/s at room temperature), over 2-3x higher than the other films. In ultrathin p-type FETs with Ge2Sb2Te5, we achieve field-effect mobility up to ~5.5 cm2/V/s with current on/off ratio ~10000, the highest for Ge2Sb2Te5 transistors to date. We also explore process optimizations (e.g., AlOx capping layer, type of developer for lithography) and uncover their trade-offs towards the realization of p-type transistors with acceptable mobility and on/off current ratio. Our study provides essential insights into the optimization of electronic devices based on p-type chalcogenides.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا