High-quality dielectric-semiconductor interfaces are critical for reliable high-performance transistors. We report the in-situ metalorganic chemical vapor deposition (MOCVD) of Al$_2$O$_3$ on $beta$-Ga$_2$O$_3$ as a potentially better alternative to the most commonly used atomic layer deposition (ALD). The growth of Al$_2$O$_3$ is performed in the same reactor as Ga$_2$O$_3$ using trimethylaluminum and O$_2$ as precursors without breaking the vacuum at a growth temperature of 600 $^0$C. The fast and slow near interface traps at the Al$_2$O$_3$/ $beta$-Ga$_2$O$_3$ interface are identified and quantified using stressed capacitance-voltage (CV) measurements on metal oxide semiconductor capacitor (MOSCAP) structures. The density of shallow and deep level initially filled traps (D$_{it}$) are measured using ultra-violet (UV) assisted CV technique. The average D$_{it}$ for the MOSCAP is determined to be 7.8 $times$ 10$^{11}$ cm$^{-2}$eV$^{-1}$. The conduction band offset of the Al$_2$O$_3$/ Ga$_2$O$_3$ interface is also determined from CV measurements and found out to be 1.7 eV which is in close agreement with the existing literature reports of ALD Al$_2$O$_3$/ Ga$_2$O$_3$ interface. The current-voltage characteristics are also analyzed and the average breakdown field is extracted to be approximately 5.8 MV/cm. This in-situ Al$_2$O$_3$ dielectric on $beta$-Ga$_2$O$_3$ with improved dielectric properties can enable Ga$_2$O$_3$-based high performance devices.
Combining MoS$_2$ monolayers to form multilayers allows to access new functionalities. In this work, we examine the correlation between the stacking order and the interlayer coupling of valence states in MoS$_2$ homobilayer samples grown by chemical vapor deposition (CVD) and artificially stacked bilayers from CVD monolayers. We show that hole delocalization over the bilayer is allowed in 2H stacking and results in strong interlayer exciton absorption and also in a larger A-B exciton separation as compared to 3R bilayers, where both holes and electrons are confined to the individual layers. Comparing 2H and 3R reflectivity spectra allows to extract an interlayer coupling energy of about $t_perp=49$ meV. Obtaining very similar results for as-grown and artificially stacked bilayers is promising for assembling large area van der Waals structures with CVD material, using interlayer exciton absorption and A-B exciton separation as indicators for interlayer coupling. Beyond DFT calculations including excitonic effects confirm signatures of efficient interlayer coupling for 2H stacking in agreement with our experiments.
Palladium diselenide (PdSe$_2$), a new type of two-dimensional noble metal dihalides (NMDCs), has received widespread attention for its excellent electrical and optoelectronic properties. Herein, high-quality continuous centimeter-scale PdSe$_2$ films with layers in the range of 3L-15L were grown using Chemical Vapor Deposition (CVD) method. The absorption spectra and DFT calculations revealed that the bandgap of the PdSe$_2$ films decreased with increasing number of layers, which is due to PdSe$_2$ enhancement of orbital hybridization. Spectroscopic ellipsometry (SE) analysis shows that PdSe2 has significant layer-dependent optical and dielectric properties. This is mainly due to the unique strong exciton effect of the thin PdSe$_2$ film in the UV band. In particular, the effect of temperature on the optical properties of PdSe$_2$ films was also observed, and the thermo-optical coefficients of PdSe$_2$ films with different number of layers were calculated. This study provides fundamental guidance for the fabrication and optimization of PdSe$_2$-based optoelectronic devices.
Molybdenum disulfide (MoS2) is a particularly interesting member of the family of two-dimensional (2D) materials due to its semiconducting and tunable electronic properties. Currently, the most reliable method for obtaining high-quality industrial scale amounts of 2D materials is chemical vapor deposition (CVD), which results in polycrystalline samples. As grain boundaries (GBs) are intrinsic defect lines within CVD-grown 2D materials, their atomic structure is of paramount importance. Here, through atomic-scale analysis of micrometer-long GBs, we show that covalently bound boundaries in 2D MoS2 tend to be decorated by nanopores. Such boundaries occur when differently oriented MoS2 grains merge during growth, whereas the overlap of grains leads to boundaries with bilayer areas. Our results suggest that the nanopore formation is related to stress release in areas with a high concentration of dislocation cores at the grain boundaries, and that the interlayer interaction leads to intrinsic rippling at the overlap regions. This provides insights for the controlled fabrication of large-scale MoS 2 samples with desired structural properties for applications.
We report on the growth and characterization of Ge-doped b{eta}-Ga2O3 thin films using a solid germanium source. b{eta}-Ga2O3 thin films were grown using a low-pressure chemical vapor deposition (LPCVD) reactor with either an oxygen or gallium delivery tube. Films were grown on 6 degree offcut sapphire and (010) b{eta}-Ga2O3 substrates with growth rates between 0.5 - 22 {mu}m/hr. By controlling the germanium vapor pressure, a wide range of Hall carrier concentrations between 10^17 - 10^19 cm-3 were achieved. Low-temperature Hall data revealed a difference in donor incorporation depending on the reactor configuration. At low growth rates, germanium occupied a single donor energy level between 8 - 10 meV. At higher growth rates, germanium doping predominantly results in a deeper donor energy level at 85 meV. This work shows the effect of reactor design and growth regime on the kinetics of impurity incorporation. Studying donor incorporation in b{eta}-Ga2O3 is important for the design of high-power electronic devices.
Gallium oxide epitaxial layers grown on native substrates and basal plane sapphire were characherized by X-ray phtotelectron and optical reflectance spectroscopies. The XPS electronic structure mapping was coupled to Density functional theory calculations.
Saurav Roy
,Adrian E. Chmielewski
,Arkka Bhattacharyya
.
(2021)
.
"In-situ dielectric Al2O3/b{eta}-Ga2O3 Interfaces Grown Using Metal-organic Chemical Vapor Deposition"
.
Saurav Roy
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا