Do you want to publish a course? Click here

Band alignments of electronic energy structure in epitaxially grown b{eta}-Ga2O3 layers

335   0   0.0 ( 0 )
 Added by Daniela Gogova
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gallium oxide epitaxial layers grown on native substrates and basal plane sapphire were characherized by X-ray phtotelectron and optical reflectance spectroscopies. The XPS electronic structure mapping was coupled to Density functional theory calculations.



rate research

Read More

By combining temperature-dependent resistivity and Hall effect measurements, we investigate donor state energy in Si-doped b{eta}-Ga2O3 films grown using metal-organic vapor phase epitaxy (MOVPE). High magnetic field Hall effect measurements (H = +/-90 kOe) showed non-linear Hall resistance for T < 150 K revealing two-band conduction. Further analyses revealed carrier freeze-out characteristics in both bands yielding donor state energies of ~ 33.7 and ~ 45.6 meV. The former is consistent with the donor energy of Si in b{eta}-Ga2O3 whereas the latter suggests a residual donor state, likely associated with a DX center. This study provides a critical insight into the impurity band conduction and the defect energy states in b{eta}-Ga2O3 using high-field magnetotransport measurements.
High-quality dielectric-semiconductor interfaces are critical for reliable high-performance transistors. We report the in-situ metalorganic chemical vapor deposition (MOCVD) of Al$_2$O$_3$ on $beta$-Ga$_2$O$_3$ as a potentially better alternative to the most commonly used atomic layer deposition (ALD). The growth of Al$_2$O$_3$ is performed in the same reactor as Ga$_2$O$_3$ using trimethylaluminum and O$_2$ as precursors without breaking the vacuum at a growth temperature of 600 $^0$C. The fast and slow near interface traps at the Al$_2$O$_3$/ $beta$-Ga$_2$O$_3$ interface are identified and quantified using stressed capacitance-voltage (CV) measurements on metal oxide semiconductor capacitor (MOSCAP) structures. The density of shallow and deep level initially filled traps (D$_{it}$) are measured using ultra-violet (UV) assisted CV technique. The average D$_{it}$ for the MOSCAP is determined to be 7.8 $times$ 10$^{11}$ cm$^{-2}$eV$^{-1}$. The conduction band offset of the Al$_2$O$_3$/ Ga$_2$O$_3$ interface is also determined from CV measurements and found out to be 1.7 eV which is in close agreement with the existing literature reports of ALD Al$_2$O$_3$/ Ga$_2$O$_3$ interface. The current-voltage characteristics are also analyzed and the average breakdown field is extracted to be approximately 5.8 MV/cm. This in-situ Al$_2$O$_3$ dielectric on $beta$-Ga$_2$O$_3$ with improved dielectric properties can enable Ga$_2$O$_3$-based high performance devices.
We report on the growth and characterization of Ge-doped b{eta}-Ga2O3 thin films using a solid germanium source. b{eta}-Ga2O3 thin films were grown using a low-pressure chemical vapor deposition (LPCVD) reactor with either an oxygen or gallium delivery tube. Films were grown on 6 degree offcut sapphire and (010) b{eta}-Ga2O3 substrates with growth rates between 0.5 - 22 {mu}m/hr. By controlling the germanium vapor pressure, a wide range of Hall carrier concentrations between 10^17 - 10^19 cm-3 were achieved. Low-temperature Hall data revealed a difference in donor incorporation depending on the reactor configuration. At low growth rates, germanium occupied a single donor energy level between 8 - 10 meV. At higher growth rates, germanium doping predominantly results in a deeper donor energy level at 85 meV. This work shows the effect of reactor design and growth regime on the kinetics of impurity incorporation. Studying donor incorporation in b{eta}-Ga2O3 is important for the design of high-power electronic devices.
156 - Yande Que , Wende Xiao , Hui Chen 2017
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.
Crystalline Fe3O4/NiO bilayers were grown on MgO(001) substrates using reactive molecular beam epitaxy to investigate their structural properties and their morphology. The film thickness either of the Fe3O4 film or of the NiO film has been varied to shed light on the relaxation of the bilayer system. The surface properties as studied by x-ray photo electron spectroscopy and low energy electron diffraction show clear evidence of stoichiometric well-ordered film surfaces. Based on the kinematic approach x-ray diffraction experiments were completely analyzed. As a result the NiO films grow pseudomorphic in the investigated thickness range (up to 34nm) while the Fe3O4 films relax continuously up to the thickness of 50nm. Although all diffraction data show well developed Laue fringes pointing to oxide films of very homogeneous thickness, the Fe3O4-NiO interface roughens continuously up to 1nm root-mean-square roughness with increasing NiO film thickness while the Fe3O4 surface is very smooth independent on the Fe3O4 film thickness. Finally, the Fe3O4-NiO interface spacing is similar to the interlayer spacing of the oxide films while the NiO-MgO interface is expanded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا