No Arabic abstract
Let $mathcal S$ be a single condition Schubert variety with an arbitrary number of strata. Recently, an explicit description of the summands involved in the decomposition theorem applied to such a variety has been obtained in a paper of the second author. Starting from this result, we provide an explicit description of the Poincar{e} polynomials of the intersection cohomology of $mathcal S$ by means of the Poincar{e} polynomials of its strata, obtaining interesting polynomial identities relating Poincar{e} polynomials of several Grassmannians, both by a local and by a global point of view. We also present a symbolic study of a particular case of these identities.
We give a short and self-contained proof of the Decomposition Theorem for the non-small resolution of a Special Schubert variety. We also provide an explicit description of the perverse cohomology sheaves. As a by-product of our approach, we obtain a simple proof of the Relative Hard Lefschetz Theorem.
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes of regular semisimple Hessenberg varieties in terms of Chern classes. In fact, we show that the cohomology class of each regular semisimple Hessenberg variety is the specialization of a certain double Schubert polynomial, giving a natural geometric interpretation to such specializations. We also decompose such classes in terms of the Schubert basis for the cohomology ring of the flag variety. The coefficients obtained are nonnegative, and we give closed combinatorial formulas for the coefficients in many cases. We introduce a closely related family of schemes called regular nilpotent Hessenberg schemes, and use our results to determine when such schemes are reduced.
We establish sharp estimates that adapt the polynomial method to arbitrary varieties. These include a partitioning theorem, estimates on polynomials vanishing on fixed sets and bounds for the number of connected components of real algebraic varieties. As a first application, we provide a general incidence estimate that is tight in its dependence on the size, degree and dimension of the varieties involved.
We study the geometry of equicharacteristic partial affine flag varieties associated to tamely ramified groups $G$ in characteristics $p>0$ dividing the order of the fundamental group $pi_1(G_{text{der}})$. We obtain that most Schubert varieties are not normal and provide an explicit criterion for when this happens. Apart from this, we show, on the one hand, that loop groups of semisimple groups satisfying $p mid lvert pi_1(G_{text{der}})rvert$ are not reduced, and on the other hand, that their integral realizations are ind-flat. Our methods allow us to classify all tamely ramified Pappas-Zhu local models of Hodge type which are normal.
Let $G=SL(n, mathbb{C}),$ and $T$ be a maximal torus of $G,$ where $n$ is a positive even integer. In this article, we study the GIT quotients of the Schubert varieties in the Grassmannian $G_{2,n}.$ We prove that the GIT quotients of the Richardson varieties in the minimal dimensional Schubert variety admitting stable points in $G_{2,n}$ are projective spaces. Further, we prove that the GIT quotients of certain Richardson varieties in $G_{2,n}$ are projective toric varieties. Also, we prove that the GIT quotients of the Schubert varieties in $G_{2,n}$ have at most finite set of singular points. Further, we have computed the exact number of singular points of the GIT quotient of $G_{2,n}.$