Do you want to publish a course? Click here

Torus quotients of Schubert varieties in the Grassmannian $G_{2,n}$

132   0   0.0 ( 0 )
 Added by Pinakinath Saha
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $G=SL(n, mathbb{C}),$ and $T$ be a maximal torus of $G,$ where $n$ is a positive even integer. In this article, we study the GIT quotients of the Schubert varieties in the Grassmannian $G_{2,n}.$ We prove that the GIT quotients of the Richardson varieties in the minimal dimensional Schubert variety admitting stable points in $G_{2,n}$ are projective spaces. Further, we prove that the GIT quotients of certain Richardson varieties in $G_{2,n}$ are projective toric varieties. Also, we prove that the GIT quotients of the Schubert varieties in $G_{2,n}$ have at most finite set of singular points. Further, we have computed the exact number of singular points of the GIT quotient of $G_{2,n}.$



rate research

Read More

Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes of regular semisimple Hessenberg varieties in terms of Chern classes. In fact, we show that the cohomology class of each regular semisimple Hessenberg variety is the specialization of a certain double Schubert polynomial, giving a natural geometric interpretation to such specializations. We also decompose such classes in terms of the Schubert basis for the cohomology ring of the flag variety. The coefficients obtained are nonnegative, and we give closed combinatorial formulas for the coefficients in many cases. We introduce a closely related family of schemes called regular nilpotent Hessenberg schemes, and use our results to determine when such schemes are reduced.
We prove that the divisor class group of any open Richardson variety in the Grassmannian is trivial. Our proof uses Nagatas criterion, localizing the coordinate ring at a suitable set of Plucker coordinates. We prove that these Plucker coordinates are prime elements by showing that the subscheme they define is an open subscheme of a positroid variety. Our results hold over any field and over the integers.
We study the geometry of equicharacteristic partial affine flag varieties associated to tamely ramified groups $G$ in characteristics $p>0$ dividing the order of the fundamental group $pi_1(G_{text{der}})$. We obtain that most Schubert varieties are not normal and provide an explicit criterion for when this happens. Apart from this, we show, on the one hand, that loop groups of semisimple groups satisfying $p mid lvert pi_1(G_{text{der}})rvert$ are not reduced, and on the other hand, that their integral realizations are ind-flat. Our methods allow us to classify all tamely ramified Pappas-Zhu local models of Hodge type which are normal.
We develop a combinatorial rule to compute the real geometry of type B Schubert curves $S(lambda_bullet)$ in the orthogonal Grassmannian $mathrm{OG}_n$, which are one-dimensional Schubert problems defined with respect to orthogonal flags osculating the rational normal curve. Our results are natural analogs of results previously known only in type A. First, using the type B Wronski map, we show that the real locus of the Schubert curve has a natural covering map to $mathbb{RP}^1$, with monodromy operator $omega$ defined as the commutator of jeu de taquin rectification and promotion on skew shifted semistandard tableaux. We then introduce two different algorithms to compute $omega$ without rectifying the skew tableau. The first uses recently-developed shifted tableau crystal operators, while the second uses local switches much like jeu de taquin. The switching algorithm further computes the K-theory coefficient of the Schubert curve: its nonadjacent switches precisely enumerate Pechenik and Yongs shifted genomic tableaux. The connection to K-theory also gives rise to a partial understanding of the complex geometry of these curves.
88 - Davide Franco 2018
We give a short and self-contained proof of the Decomposition Theorem for the non-small resolution of a Special Schubert variety. We also provide an explicit description of the perverse cohomology sheaves. As a by-product of our approach, we obtain a simple proof of the Relative Hard Lefschetz Theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا