Do you want to publish a course? Click here

The polynomial method over varieties

102   0   0.0 ( 0 )
 Added by Miguel N. Walsh
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We establish sharp estimates that adapt the polynomial method to arbitrary varieties. These include a partitioning theorem, estimates on polynomials vanishing on fixed sets and bounds for the number of connected components of real algebraic varieties. As a first application, we provide a general incidence estimate that is tight in its dependence on the size, degree and dimension of the varieties involved.

rate research

Read More

Regular semisimple Hessenberg varieties are subvarieties of the flag variety $mathrm{Flag}(mathbb{C}^n)$ arising naturally in the intersection of geometry, representation theory, and combinatorics. Recent results of Abe-Horiguchi-Masuda-Murai-Sato and Abe-DeDieu-Galetto-Harada relate the volume polynomials of regular semisimple Hessenberg varieties to the volume polynomial of the Gelfand-Zetlin polytope $mathrm{GZ}(lambda)$ for $lambda=(lambda_1,lambda_2,ldots,lambda_n)$. The main results of this manuscript use and generalize tools developed by Anderson-Tymoczko, Kiritchenko-Smirnov-Timorin, and Postnikov, in order to derive an explicit formula for the volume polynomials of regular semisimple Hessenberg varieties in terms of the volumes of certain faces of the Gelfand-Zetlin polytope, and also exhibit a manifestly positive, combinatorial formula for their coefficients with respect to the basis of monomials in the $alpha_i := lambda_i-lambda_{i+1}$. In addition, motivated by these considerations, we carefully analyze the special case of the permutohedral variety, which is also known as the toric variety associated to Weyl chambers. In this case, we obtain an explicit decomposition of the permutohedron (the moment map image of the permutohedral variety) into combinatorial $(n-1)$-cubes, and also give a geometric interpretation of this decomposition by expressing the cohomology class of the permutohedral variety in $mathrm{Flag}(mathbb{C}^n)$ as a sum of the cohomology classes of a certain set of Richardson varieties.
Let $mathcal S$ be a single condition Schubert variety with an arbitrary number of strata. Recently, an explicit description of the summands involved in the decomposition theorem applied to such a variety has been obtained in a paper of the second author. Starting from this result, we provide an explicit description of the Poincar{e} polynomials of the intersection cohomology of $mathcal S$ by means of the Poincar{e} polynomials of its strata, obtaining interesting polynomial identities relating Poincar{e} polynomials of several Grassmannians, both by a local and by a global point of view. We also present a symbolic study of a particular case of these identities.
This paper studies the geometry and combinatorics of three interrelated varieties: Springer fibers, Steinberg varieties, and parabolic Hessenberg varieties. We prove that each parabolic Hessenberg variety is the pullback of a Steinberg variety under the projection of the flag variety to an appropriate partial flag variety and we give three applications of this result. The first application constructs an explicit paving of all Steinberg varieties in Lie type $A$ in terms of semistandard tableaux. As a result, we obtain an elementary proof of a theorem of Steinberg and Shimomura that the well-known Kostka numbers count the maximal-dimensional irreducible components of Steinberg varieties. The second application proves an open conjecture for certain parabolic Hessenberg varieties in Lie type A by showing that their Betti numbers equal those of a specific union of Schubert varieties. The third application proves that the irreducible components of parabolic Hessenberg varieties are in bijection with the irreducible components of the Steinberg variety. All three of these applications extend our geometric understanding of the three varieties at the heart of this paper, a full understanding of which is unknown even for Springer varieties, despite over forty years worth of work.
We prove an analogue of Kirchhoffs matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical Abel-Prym map. In particular, we show that the map is harmonic, determine its degree at every cell of the decomposition, and prove that its global degree is $2^{g-1}$. Along the way, we use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel-Prym map is $2^{g-1}$ as well.
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations and monodromy-weight conjecture. On the way to establish these results, we introduce and prove other results of independent interest. This includes a generalization of the results of Adiprasito-Huh-Katz, Hodge theory for combinatorial geometries, to any unimodular quasi-projective fan having the same support as the Bergman fan of a matroid, a tropical analog for Bergman fans of the pioneering work of Feichtner-Yuzvinsky on cohomology of wonderful compactifications (treated in a separate paper, recalled and used here), a combinatorial study of the tropical version of the Steenbrink spectral sequence, a treatment of Kahler forms in tropical geometry and their associated Hodge-Lefschetz structures, a tropical version of the projective bundle formula, and a result in polyhedral geometry on the existence of quasi-projective unimodular triangulations of polyhedral spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا