Do you want to publish a course? Click here

Explicit Decomposition Theorem for special Schubert varieties

89   0   0.0 ( 0 )
 Added by Davide Franco
 Publication date 2018
  fields
and research's language is English
 Authors Davide Franco




Ask ChatGPT about the research

We give a short and self-contained proof of the Decomposition Theorem for the non-small resolution of a Special Schubert variety. We also provide an explicit description of the perverse cohomology sheaves. As a by-product of our approach, we obtain a simple proof of the Relative Hard Lefschetz Theorem.



rate research

Read More

Let $mathcal S$ be a single condition Schubert variety with an arbitrary number of strata. Recently, an explicit description of the summands involved in the decomposition theorem applied to such a variety has been obtained in a paper of the second author. Starting from this result, we provide an explicit description of the Poincar{e} polynomials of the intersection cohomology of $mathcal S$ by means of the Poincar{e} polynomials of its strata, obtaining interesting polynomial identities relating Poincar{e} polynomials of several Grassmannians, both by a local and by a global point of view. We also present a symbolic study of a particular case of these identities.
We study the geometry of equicharacteristic partial affine flag varieties associated to tamely ramified groups $G$ in characteristics $p>0$ dividing the order of the fundamental group $pi_1(G_{text{der}})$. We obtain that most Schubert varieties are not normal and provide an explicit criterion for when this happens. Apart from this, we show, on the one hand, that loop groups of semisimple groups satisfying $p mid lvert pi_1(G_{text{der}})rvert$ are not reduced, and on the other hand, that their integral realizations are ind-flat. Our methods allow us to classify all tamely ramified Pappas-Zhu local models of Hodge type which are normal.
The first author and Bump defined Schubert Eisenstein series by restricting the summation in a degenerate Eisenstein series to a particular Schubert variety. In the case of $mathrm{GL}_3$ over $mathbb{Q}$ they proved that these Schubert Eisenstein series have meromorphic continuations in all parameters and conjectured the same is true in general. We revisit their conjecture and relate it to the program of Braverman, Kazhdan, Lafforgue, Ng^o, and Sakellaridis aimed at establishing generalizations of the Poisson summation formula. We prove the Poisson summation formula for certain schemes closely related to Schubert varieties and use it to refine and establish the conjecture of the first author and Bump in many cases.
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes of regular semisimple Hessenberg varieties in terms of Chern classes. In fact, we show that the cohomology class of each regular semisimple Hessenberg variety is the specialization of a certain double Schubert polynomial, giving a natural geometric interpretation to such specializations. We also decompose such classes in terms of the Schubert basis for the cohomology ring of the flag variety. The coefficients obtained are nonnegative, and we give closed combinatorial formulas for the coefficients in many cases. We introduce a closely related family of schemes called regular nilpotent Hessenberg schemes, and use our results to determine when such schemes are reduced.
We prove an analogue of Kirchhoffs matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical Abel-Prym map. In particular, we show that the map is harmonic, determine its degree at every cell of the decomposition, and prove that its global degree is $2^{g-1}$. Along the way, we use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel-Prym map is $2^{g-1}$ as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا