No Arabic abstract
The twin-width of a graph $G$ is the minimum integer $d$ such that $G$ has a $d$-contraction sequence, that is, a sequence of $|V(G)|-1$ iterated vertex identifications for which the overall maximum number of red edges incident to a single vertex is at most $d$, where a red edge appears between two sets of identified vertices if they are not homogeneous in $G$. We show that if a graph admits a $d$-contraction sequence, then it also has a linear-arity tree of $f(d)$-contractions, for some function $f$. First this permits to show that every bounded twin-width class is small, i.e., has at most $n!c^n$ graphs labeled by $[n]$, for some constant $c$. This unifies and extends the same result for bounded treewidth graphs [Beineke and Pippert, JCT 69], proper subclasses of permutations graphs [Marcus and Tardos, JCTA 04], and proper minor-free classes [Norine et al., JCTB 06]. The second consequence is an $O(log n)$-adjacency labeling scheme for bounded twin-width graphs, confirming several cases of the implicit graph conjecture. We then explore the small conjecture that, conversely, every small hereditary class has bounded twin-width. Inspired by sorting networks of logarithmic depth, we show that $log_{Theta(log log d)}n$-subdivisions of $K_n$ (a small class when $d$ is constant) have twin-width at most $d$. We obtain a rather sharp converse with a surprisingly direct proof: the $log_{d+1}n$-subdivision of $K_n$ has twin-width at least $d$. Secondly graphs with bounded stack or queue number (also small classes) have bounded twin-width. Thirdly we show that cubic expanders obtained by iterated random 2-lifts from $K_4$~[Bilu and Linial, Combinatorica 06] have bounded twin-width, too. We suggest a promising connection between the small conjecture and group theory. Finally we define a robust notion of sparse twin-width and discuss how it compares with other sparse classes.
Inspired by a width invariant defined on permutations by Guillemot and Marx [SODA 14], we introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded rank-width graphs, map graphs, $K_t$-free unit $d$-dimensional ball graphs, posets with antichains of bounded size, and proper subclasses of dimension-2 posets all have bounded twin-width. On all these classes (except map graphs without geometric embedding) we show how to compute in polynomial time a sequence of $d$-contractions, witness that the twin-width is at most $d$. We show that FO model checking, that is deciding if a given first-order formula $phi$ evaluates to true for a given binary structure $G$ on a domain $D$, is FPT in $|phi|$ on classes of bounded twin-width, provided the witness is given. More precisely, being given a $d$-contraction sequence for $G$, our algorithm runs in time $f(d,|phi|) cdot |D|$ where $f$ is a computable but non-elementary function. We also prove that bounded twin-width is preserved by FO interpretations and transductions (allowing operations such as squaring or complementing a graph). This unifies and significantly extends the knowledge on fixed-parameter tractability of FO model checking on non-monotone classes, such as the FPT algorithm on bounded-width posets by Gajarsky et al. [FOCS 15].
The class of all even-hole-free graphs has unbounded tree-width, as it contains all complete graphs. Recently, a class of (even-hole, $K_4$)-free graphs was constructed, that still has unbounded tree-width [Sintiari and Trotignon, 2019]. The class has unbounded degree and contains arbitrarily large clique-minors. We ask whether this is necessary. We prove that for every graph $G$, if $G$ excludes a fixed graph $H$ as a minor, then $G$ either has small tree-width, or $G$ contains a large wall or the line graph of a large wall as induced subgraph. This can be seen as a strengthening of Robertson and Seymours excluded grid theorem for the case of minor-free graphs. Our theorem implies that every class of even-hole-free graphs excluding a fixed graph as a minor has bounded tree-width. In fact, our theorem applies to a more general class: (theta, prism)-free graphs. This implies the known result that planar even hole-free graph have bounded tree-width [da Silva and Linhares Sales, Discrete Applied Mathematics 2010]. We conjecture that even-hole-free graphs of bounded degree have bounded tree-width. If true, this would mean that even-hole-freeness is testable in the bounded-degree graph model of property testing. We prove the conjecture for subcubic graphs and we give a bound on the tree-width of the class of (even hole, pyramid)-free graphs of degree at most 4.
Inspired by a width invariant defined on permutations by Guillemot and Marx, the twin-width invariant has been recently introduced by Bonnet, Kim, Thomasse, and Watrigant. We prove that a class of binary relational structures (that is: edge-colored partially directed graphs) has bounded twin-width if and only if it is a first-order transduction of a~proper permutation class. As a by-product, it shows that every class with bounded twin-width contains at most $2^{O(n)}$ pairwise non-isomorphic $n$-vertex graphs.
We study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for $k$-Dominating Set on graphs of twin-width at most 4 would contradict a standard complexity-theoretic assumption. The reduction is quite involved, especially to get the twin-width upper bound down to 4, and can be tweaked to work for Connected $k$-Dominating Set and Total $k$-Dominating Set (albeit with a worse upper bound on the twin-width). The $k$-Independent Set problem admits the same lower bound by a much simpler argument, previously observed [ICALP 21], which extends to $k$-Independent Dominating Set, $k$-Path, $k$-Induced Path, $k$-Induced Matching, etc. On the positive side, we obtain a simple quadratic vertex kernel for Connected $k$-Vertex Cover and Capacitated $k$-Vertex Cover on graphs of bounded twin-width. Interestingly the kernel applies to graphs of Vapnik-Chervonenkis density 1, and does not require a witness sequence. We also present a more intricate $O(k^{1.5})$ vertex kernel for Connected $k$-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most optimization/decision graph problems can be solved in polynomial time on graphs of twin-width at most 1.
In this paper, we prove that a graph $G$ with no $K_{s,s}$-subgraph and twin-width $d$ has $r$-admissibility and $r$-coloring numbers bounded from above by an exponential function of $r$ and that we can construct graphs achieving such a dependency in $r$.