No Arabic abstract
The class of all even-hole-free graphs has unbounded tree-width, as it contains all complete graphs. Recently, a class of (even-hole, $K_4$)-free graphs was constructed, that still has unbounded tree-width [Sintiari and Trotignon, 2019]. The class has unbounded degree and contains arbitrarily large clique-minors. We ask whether this is necessary. We prove that for every graph $G$, if $G$ excludes a fixed graph $H$ as a minor, then $G$ either has small tree-width, or $G$ contains a large wall or the line graph of a large wall as induced subgraph. This can be seen as a strengthening of Robertson and Seymours excluded grid theorem for the case of minor-free graphs. Our theorem implies that every class of even-hole-free graphs excluding a fixed graph as a minor has bounded tree-width. In fact, our theorem applies to a more general class: (theta, prism)-free graphs. This implies the known result that planar even hole-free graph have bounded tree-width [da Silva and Linhares Sales, Discrete Applied Mathematics 2010]. We conjecture that even-hole-free graphs of bounded degree have bounded tree-width. If true, this would mean that even-hole-freeness is testable in the bounded-degree graph model of property testing. We prove the conjecture for subcubic graphs and we give a bound on the tree-width of the class of (even hole, pyramid)-free graphs of degree at most 4.
A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc graphs. This structure theorem is the basis of our $O(nm)$-time certifying algorithm for recognizing (pan, even hole)-free graphs and for our $O(n^{2.5}+nm)$-time algorithm to optimally color them. Using this structure theorem, we show that the tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 times the clique number.
A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.
A graph is even-hole-free if it has no induced even cycles of length 4 or more. A cap is a cycle of length at least 5 with exactly one chord and that chord creates a triangle with the cycle. In this paper, we consider (cap, even hole)-free graphs, and more generally, (cap, 4-hole)-free odd-signable graphs. We give an explicit construction of these graphs. We prove that every such graph $G$ has a vertex of degree at most $frac{3}{2}omega (G) -1$, and hence $chi(G)leq frac{3}{2}omega (G)$, where $omega(G)$ denotes the size of a largest clique in $G$ and $chi(G)$ denotes the chromatic number of $G$. We give an $O(nm)$ algorithm for $q$-coloring these graphs for fixed $q$ and an $O(nm)$ algorithm for maximum weight stable set. We also give a polynomial-time algorithm for minimum coloring. Our algorithms are based on our results that triangle-free odd-signable graphs have treewidth at most 5 and thus have clique-width at most 48, and that (cap, 4-hole)-free odd-signable graphs $G$ without clique cutsets have treewidth at most $6omega(G)-1$ and clique-width at most 48.
A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive proof of the fact that any plane graph $G$ contains a cactus subgraph $C$ where $C$ contains at least a $frac{1}{6}$ fraction of the triangular faces of $G$. We also show that this ratio cannot be improved by showing a tight lower bound. Together with an algorithm for linear matroid parity, our bound implies two approximation algorithms for computing dense planar structures inside any graph: (i) A $frac{1}{6}$ approximation algorithm for, given any graph $G$, finding a planar subgraph with a maximum number of triangular faces; this improves upon the previous $frac{1}{11}$-approximation; (ii) An alternate (and arguably more illustrative) proof of the $frac{4}{9}$ approximation algorithm for finding a planar subgraph with a maximum number of edges. Our bound is obtained by analyzing a natural local search strategy and heavily exploiting the exchange arguments. Therefore, this suggests the power of local search in handling problems of this kind.
We prove that if $G$ is a sparse graph --- it belongs to a fixed class of bounded expansion $mathcal{C}$ --- and $din mathbb{N}$ is fixed, then the $d$th power of $G$ can be partitioned into cliques so that contracting each of these clique to a single vertex again yields a sparse graph. This result has several graph-theoretic and algorithmic consequences for powers of sparse graphs, including bounds on their subchromatic number and efficient approximation algorithms for the chromatic number and the clique number.