I show that classical capacity per unit cost of noisy bosonic Gaussian channels can be attained by employing generalized on-off keying modulation format and a projective measurement of individual output states. This means that neither complicated collective measurements nor phase-sensitive detection is required to communicate over optical channels at the ultimate limit imposed by laws of quantum mechanics in the limit of low average cost.
We consider a Gaussian multiple-access channel where the number of transmitters grows with the blocklength $n$. For this setup, the maximum number of bits that can be transmitted reliably per unit-energy is analyzed. We show that if the number of users is of an order strictly above $n/log n$, then the users cannot achieve any positive rate per unit-energy. In contrast, if the number of users is of order strictly below $n/log n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$ (where $N_0/ 2$ is the noise power) by using an orthogonal access scheme such as time division multiple access. We further demonstrate that orthogonal codebooks, which achieve the capacity per unit-energy when the number of users is bounded, can be strictly suboptimal.
We consider a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may be unbounded. For this channel, we characterize the maximum number of bits that can be transmitted reliably per unit-energy in terms of $ell_n$ and $k_n$. We show that if $k_nlog ell_n$ is sublinear in $n$, then each user can achieve the single-user capacity per unit-energy. Conversely, if $k_nlog ell_n$ is superlinear in $n$, then the capacity per unit-energy is zero. We further demonstrate that orthogonal-access schemes, which are optimal when all users are active with probability one, can be strictly suboptimal.
In a quantum mechanical model, Diosi, Feldmann and Kosloff arrived at a conjecture stating that the limit of the entropy of certain mixtures is the relative entropy as system size goes to infinity. The conjecture is proven in this paper for density m
atrices. The first proof is analytic and uses the quantum law of large numbers. The second one clarifies the relation to channel capacity per unit cost for classical-quantum channels. Both proofs lead to generalization of the conjecture.
The set of quantum Gaussian channels acting on one bosonic mode can be classified according to the action of the group of Gaussian unitaries. We look for bounds on the classical capacity for channels belonging to such a classification. Lower bounds can be efficiently calculated by restricting to Gaussian encodings, for which we provide analytical expressions.
This paper investigates the capacity and capacity per unit cost of Gaussian multiple access-channel (GMAC) with peak power constraints. We first devise an approach based on Blahut-Arimoto Algorithm to numerically optimize the sum rate and quantify the corresponding input distributions. The results reveal that in the case with identical peak power constraints, the user with higher SNR is to have a symmetric antipodal input distribution for all values of noise variance. Next, we analytically derive and characterize an achievable rate region for the capacity in cases with small peak power constraints, which coincides with the capacity in a certain scenario. The capacity per unit cost is of interest in low power regimes and is a target performance measure in energy efficient communications. In this work, we derive the capacity per unit cost of additive white Gaussian channel and GMAC with peak power constraints. The results in case of GMAC demonstrate that the capacity per unit cost is obtained using antipodal signaling for both users and is independent of users rate ratio. We characterize the optimized transmission strategies obtained for capacity and capacity per unit cost with peak-power constraint in detail and specifically in contrast to the settings with average-power constraints.