No Arabic abstract
This paper investigates the capacity and capacity per unit cost of Gaussian multiple access-channel (GMAC) with peak power constraints. We first devise an approach based on Blahut-Arimoto Algorithm to numerically optimize the sum rate and quantify the corresponding input distributions. The results reveal that in the case with identical peak power constraints, the user with higher SNR is to have a symmetric antipodal input distribution for all values of noise variance. Next, we analytically derive and characterize an achievable rate region for the capacity in cases with small peak power constraints, which coincides with the capacity in a certain scenario. The capacity per unit cost is of interest in low power regimes and is a target performance measure in energy efficient communications. In this work, we derive the capacity per unit cost of additive white Gaussian channel and GMAC with peak power constraints. The results in case of GMAC demonstrate that the capacity per unit cost is obtained using antipodal signaling for both users and is independent of users rate ratio. We characterize the optimized transmission strategies obtained for capacity and capacity per unit cost with peak-power constraint in detail and specifically in contrast to the settings with average-power constraints.
We consider a Gaussian multiple-access channel where the number of transmitters grows with the blocklength $n$. For this setup, the maximum number of bits that can be transmitted reliably per unit-energy is analyzed. We show that if the number of users is of an order strictly above $n/log n$, then the users cannot achieve any positive rate per unit-energy. In contrast, if the number of users is of order strictly below $n/log n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$ (where $N_0/ 2$ is the noise power) by using an orthogonal access scheme such as time division multiple access. We further demonstrate that orthogonal codebooks, which achieve the capacity per unit-energy when the number of users is bounded, can be strictly suboptimal.
We consider a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may be unbounded. For this channel, we characterize the maximum number of bits that can be transmitted reliably per unit-energy in terms of $ell_n$ and $k_n$. We show that if $k_nlog ell_n$ is sublinear in $n$, then each user can achieve the single-user capacity per unit-energy. Conversely, if $k_nlog ell_n$ is superlinear in $n$, then the capacity per unit-energy is zero. We further demonstrate that orthogonal-access schemes, which are optimal when all users are active with probability one, can be strictly suboptimal.
A discrete-time single-user scalar channel with temporally correlated Rayleigh fading is analyzed. There is no side information at the transmitter or the receiver. A simple expression is given for the capacity per unit energy, in the presence of a peak constraint. The simple formula of Verdu for capacity per unit cost is adapted to a channel with memory, and is used in the proof. In addition to bounding the capacity of a channel with correlated fading, the result gives some insight into the relationship between the correlation in the fading process and the channel capacity. The results are extended to a channel with side information, showing that the capacity per unit energy is one nat per Joule, independently of the peak power constraint. A continuous-time version of the model is also considered. The capacity per unit energy subject to a peak constraint (but no bandwidth constraint) is given by an expression similar to that for discrete time, and is evaluated for Gauss-Markov and Clarke fading channels.
Recent investigations have shown sum capacity results within a constant bit-gap for several channel models, e.g. the two-user Gaussian interference channel (G-IC), k-user G-IC or the Gaussian X-channel. This has motivated investigations of interference-limited multi-user channels, for example, the Gaussian interfering multiple access channel (G-IMAC). Networks with interference usually require the use of interference alignment (IA) as a technique to achieve the upper bounds of a network. A promising approach in view of constant-gap capacity results is a special form of IA called signal-scale alignment, which works for time-invariant, frequency-flat, single-antenna networks. However, until now, results were limited to the many-to-one interference channel and the Gaussian X-channel. To make progress on this front, we investigate signal-scale IA schemes for the G-IMAC and aim to show a constant-gap capacity result for the G-IMAC. We derive a constant-gap sum capacity approximation for the lower triangular deterministic (LTD)-IMAC and see that the LTD model can overcome difficulties of the linear deterministic model. We show that the schemes can be translated to the Gaussian IMAC and that they achieve capacity within a constant gap. We show that multi-user gain is possible in the whole regime and provide a new look at cellular interference channels.
A practical communication channel often suffers from constraints on input other than the average power, such as the peak power constraint. In order to compare achievable rates with different constellations as well as the channel capacity under such constraints, it is crucial to take these constraints into consideration properly. In this paper, we propose a direct approach to compare the achievable rates of practical input constellations and the capacity under such constraints. As an example, we study the discrete-time complex-valued additive white Gaussian noise (AWGN) channel and compare the capacity under the peak power constraint with the achievable rates of phase shift keying (PSK) and quadrature amplitude modulation (QAM) input constellations.