Do you want to publish a course? Click here

Capacity per Unit-Energy of Gaussian Random Many-Access Channels

141   0   0.0 ( 0 )
 Added by Jithin Ravi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may be unbounded. For this channel, we characterize the maximum number of bits that can be transmitted reliably per unit-energy in terms of $ell_n$ and $k_n$. We show that if $k_nlog ell_n$ is sublinear in $n$, then each user can achieve the single-user capacity per unit-energy. Conversely, if $k_nlog ell_n$ is superlinear in $n$, then the capacity per unit-energy is zero. We further demonstrate that orthogonal-access schemes, which are optimal when all users are active with probability one, can be strictly suboptimal.



rate research

Read More

209 - Jithin Ravi , Tobias Koch 2019
We consider a Gaussian multiple-access channel where the number of transmitters grows with the blocklength $n$. For this setup, the maximum number of bits that can be transmitted reliably per unit-energy is analyzed. We show that if the number of users is of an order strictly above $n/log n$, then the users cannot achieve any positive rate per unit-energy. In contrast, if the number of users is of order strictly below $n/log n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$ (where $N_0/ 2$ is the noise power) by using an orthogonal access scheme such as time division multiple access. We further demonstrate that orthogonal codebooks, which achieve the capacity per unit-energy when the number of users is bounded, can be strictly suboptimal.
148 - Jithin Ravi , Tobias Koch 2020
This paper considers a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may grow with the blocklength $n$. For this channel, it studies the maximum number of bits that can be transmitted reliably per unit-energy as a function of $ell_n$ and $k_n$. When all users are active with probability one, i.e., $ell_n = k_n$, it is demonstrated that if $k_n$ is of an order strictly below $n/log n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$ (where $N_0/ 2$ is the noise power) by using an orthogonal-access scheme. In contrast, if $k_n$ is of an order strictly above $n/log n$, then the capacity per unit-energy is zero. Consequently, there is a sharp transition between orders of growth where interference-free communication is feasible and orders of growth where reliable communication at a positive rate per unit-energy is infeasible. It is further demonstrated that orthogonal-access schemes in combination with orthogonal codebooks, which achieve the capacity per unit-energy when the number of users is bounded, can be strictly suboptimal. When the user activity is random, i.e., when $ell_n$ and $k_n$ are different, it is demonstrated that if $k_nlog ell_n$ is sublinear in $n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$. Conversely, if $k_nlog ell_n$ is superlinear in $n$, then the capacity per unit-energy is zero. Consequently, there is again a sharp transition between orders of growth where interference-free communication is feasible and orders of growth where reliable communication at a positive rate is infeasible that depends on the asymptotic behaviours of both $ell_n$ and $k_n$. It is further demonstrated that orthogonal-access schemes, which are optimal when $ell_n = k_n$, can be strictly suboptimal.
A discrete-time single-user scalar channel with temporally correlated Rayleigh fading is analyzed. There is no side information at the transmitter or the receiver. A simple expression is given for the capacity per unit energy, in the presence of a peak constraint. The simple formula of Verdu for capacity per unit cost is adapted to a channel with memory, and is used in the proof. In addition to bounding the capacity of a channel with correlated fading, the result gives some insight into the relationship between the correlation in the fading process and the channel capacity. The results are extended to a channel with side information, showing that the capacity per unit energy is one nat per Joule, independently of the peak power constraint. A continuous-time version of the model is also considered. The capacity per unit energy subject to a peak constraint (but no bandwidth constraint) is given by an expression similar to that for discrete time, and is evaluated for Gauss-Markov and Clarke fading channels.
This paper investigates the capacity and capacity per unit cost of Gaussian multiple access-channel (GMAC) with peak power constraints. We first devise an approach based on Blahut-Arimoto Algorithm to numerically optimize the sum rate and quantify the corresponding input distributions. The results reveal that in the case with identical peak power constraints, the user with higher SNR is to have a symmetric antipodal input distribution for all values of noise variance. Next, we analytically derive and characterize an achievable rate region for the capacity in cases with small peak power constraints, which coincides with the capacity in a certain scenario. The capacity per unit cost is of interest in low power regimes and is a target performance measure in energy efficient communications. In this work, we derive the capacity per unit cost of additive white Gaussian channel and GMAC with peak power constraints. The results in case of GMAC demonstrate that the capacity per unit cost is obtained using antipodal signaling for both users and is independent of users rate ratio. We characterize the optimized transmission strategies obtained for capacity and capacity per unit cost with peak-power constraint in detail and specifically in contrast to the settings with average-power constraints.
The feedback sum-rate capacity is established for the symmetric $J$-user Gaussian multiple-access channel (GMAC). The main contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant of the factorization of a convex envelope of Geng and Nair (2014). The converse bound matches the achievable sum-rate of the Fourier-Modulated Estimate Correction strategy of Kramer (2002).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا