Do you want to publish a course? Click here

A limit relation for entropy and channel capacity per unit cost

حدود علاقة للإنتروبي وسعة القناة لكل تكلفة

327   0   0.0 ( 0 )
 Added by Denes Petz
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

In a quantum mechanical model, Diosi, Feldmann and Kosloff arrived at a conjecture stating that the limit of the entropy of certain mixtures is the relative entropy as system size goes to infinity. The conjecture is proven in this paper for density matrices. The first proof is analytic and uses the quantum law of large numbers. The second one clarifies the relation to channel capacity per unit cost for classical-quantum channels. Both proofs lead to generalization of the conjecture.



rate research

Read More

Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, which is proportional to the energy consumed. In such a setting, it is often useful to know the maximum amount of information that can be reliably transmitted per cost incurred. This is known as the capacity per unit cost. In this paper, we generalize the capacity per unit cost to various communication tasks involving a quantum channel such as classical communication, entanglement-assisted classical communication, private communication, and quantum communication. For each task, we define the corresponding capacity per unit cost and derive a formula for it analogous to that of the usual capacity. Furthermore, for the special and natural case in which there is a zero-cost state, we obtain expressions in terms of an optimized relative entropy involving the zero-cost state. For each communication task, we construct an explicit pulse-position-modulation coding scheme that achieves the capacity per unit cost. Finally, we compute capacities per unit cost for various bosonic Gaussian channels and introduce the notion of a blocklength constraint as a proposed solution to the long-standing issue of infinite capacities per unit cost. This motivates the idea of a blocklength-cost duality, on which we elaborate in depth.
We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a classical feedback channel does not improve the classical capacity of a quantum erasure channel, and by taking into account energy constraints, we conclude the same for a pure-loss bosonic channel. The method for establishing the aforementioned entropy bound involves identifying an information measure having two key properties: 1) it does not increase under a one-way local operations and classical communication channel from the receiver to the sender and 2) a quantum channel from sender to receiver cannot increase the information measure by more than the maximum output entropy of the channel. This information measure can be understood as the sum of two terms, with one corresponding to classical correlation and the other to entanglement.
234 - Marcin Jarzyna 2019
I show that classical capacity per unit cost of noisy bosonic Gaussian channels can be attained by employing generalized on-off keying modulation format and a projective measurement of individual output states. This means that neither complicated collective measurements nor phase-sensitive detection is required to communicate over optical channels at the ultimate limit imposed by laws of quantum mechanics in the limit of low average cost.
This paper investigates the capacity and capacity per unit cost of Gaussian multiple access-channel (GMAC) with peak power constraints. We first devise an approach based on Blahut-Arimoto Algorithm to numerically optimize the sum rate and quantify the corresponding input distributions. The results reveal that in the case with identical peak power constraints, the user with higher SNR is to have a symmetric antipodal input distribution for all values of noise variance. Next, we analytically derive and characterize an achievable rate region for the capacity in cases with small peak power constraints, which coincides with the capacity in a certain scenario. The capacity per unit cost is of interest in low power regimes and is a target performance measure in energy efficient communications. In this work, we derive the capacity per unit cost of additive white Gaussian channel and GMAC with peak power constraints. The results in case of GMAC demonstrate that the capacity per unit cost is obtained using antipodal signaling for both users and is independent of users rate ratio. We characterize the optimized transmission strategies obtained for capacity and capacity per unit cost with peak-power constraint in detail and specifically in contrast to the settings with average-power constraints.
We calculate numerically the capacity of a lossy photon channel assuming photon number resolving detection at the output. We consider scenarios of input Fock and coherent states ensembles and show that the latter always exhibits worse performance than the former. We obtain capacity of a discrete-time Poisson channel as a limiting behavior of the Fock states ensemble capacity. We show also that in the regime of a moderate number of photons and low losses the Fock states ensemble with direct detection is beneficial with respect to capacity limits achievable with quadrature detection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا