No Arabic abstract
Node similarity measures quantify how similar a pair of nodes are in a network. These similarity measures turn out to be an important fundamental tool for many real world applications such as link prediction in networks, recommender systems etc. An important class of similarity measures are local similarity measures. Two nodes are considered similar under local similarity measures if they have large overlap between their neighboring set of nodes. Manipulating node similarity measures via removing edges is an important problem. This type of manipulation, for example, hinders effectiveness of link prediction in terrorists networks. Fortunately, all the popular computational problems formulated around manipulating similarity measures turn out to be NP-hard. We, in this paper, provide fine grained complexity results of these problems through the lens of parameterized complexity. In particular, we show that some of these problems are fixed parameter tractable (FPT) with respect to various natural parameters whereas other problems remain intractable W[1]-hard and W[2]-hard in particular). Finally we show the effectiveness of our proposed FPT algorithms on real world datasets as well as synthetic networks generated using Barabasi-Albert and Erdos-Renyi models.
Over the years, quantifying the similarity of nodes has been a hot topic in complex networks, yet little has been known about the distributions of node-similarity. In this paper, we consider a typical measure of node-similarity called the common neighbor based similarity (CNS). By means of the generating function, we propose a general framework for calculating the CNS distributions of node sets in various complex networks. In particular, we show that for the Erd{o}s-R{e}nyi (ER) random network, the CNS distribution of node sets of any particular size obeys the Poisson law. We also connect the node-similarity distribution to the link prediction problem. We found that the performance of link prediction depends solely on the CNS distributions of the connected and unconnected node pairs in the network. Furthermore, we derive theoretical solutions of two key evaluation metrics in link prediction: i) precision and ii) area under the receiver operating characteristic curve (AUC). We show that for any link prediction method, if the similarity distributions of the connected and unconnected node pairs are identical, the AUC will be $0.5$. The theoretical solutions are elegant alternatives of the traditional experimental evaluation methods with nevertheless much lower computational cost.
Graph Neural Networks (GNNs) have achieved tremendous success in various real-world applications due to their strong ability in graph representation learning. GNNs explore the graph structure and node features by aggregating and transforming information within node neighborhoods. However, through theoretical and empirical analysis, we reveal that the aggregation process of GNNs tends to destroy node similarity in the original feature space. There are many scenarios where node similarity plays a crucial role. Thus, it has motivated the proposed framework SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure. Specifically, to balance information from graph structure and node features, we propose a feature similarity preserving aggregation which adaptively integrates graph structure and node features. Furthermore, we employ self-supervised learning to explicitly capture the complex feature similarity and dissimilarity relations between nodes. We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs. The results demonstrate that SimP-GCN outperforms representative baselines. Further probe shows various advantages of the proposed framework. The implementation of SimP-GCN is available at url{https://github.com/ChandlerBang/SimP-GCN}.
The mining of graphs in terms of their local substructure is a well-established methodology to analyze networks. It was hypothesized that motifs - subgraph patterns which appear significantly more often than expected at random - play a key role for the ability of a system to perform its task. Yet the framework commonly used for motif-detection averages over the local environments of all nodes. Therefore, it remains unclear whether motifs are overrepresented in the whole system or only in certain regions. In this contribution, we overcome this limitation by mining node-specific triad patterns. For every vertex, the abundance of each triad pattern is considered only in triads it participates in. We investigate systems of various fields and find that motifs are distributed highly heterogeneously. In particular we focus on the feed-forward loop motif which has been alleged to play a key role in biological networks.
We study the online influence maximization (OIM) problem in social networks, where in multiple rounds the learner repeatedly chooses seed nodes to generate cascades, observes the cascade feedback, and gradually learns the best seeds that generate the largest cascade. We focus on two major challenges in this paper. First, we work with node-level feedback instead of edge-level feedback. The edge-level feedback reveals all edges that pass through information in a cascade, where the node-level feedback only reveals the activated nodes with timestamps. The node-level feedback is arguably more realistic since in practice it is relatively easy to observe who is influenced but very difficult to observe from which relationship (edge) the influence comes from. Second, we use standard offline oracle instead of offline pair-oracle. To compute a good seed set for the next round, an offline pair-oracle finds the best seed set and the best parameters within the confidence region simultaneously, and such an oracle is difficult to compute due to the combinatorial core of OIM problem. So we focus on how to use the standard offline influence maximization oracle which finds the best seed set given the edge parameters as input. In this paper, we resolve these challenges for the two most popular diffusion models, the independent cascade (IC) and the linear threshold (LT) model. For the IC model, the past research only achieves edge-level feedback, while we present the first $widetilde{O}(sqrt{T})$-regret algorithm for the node-level feedback. Besides, the algorithm only invokes standard offline oracles. For the LT model, a recent study only provides an OIM solution that meets the first challenge but still requires a pair-oracle. In this paper, we apply a similar technique as in the IC model to replace the pair-oracle with a standard oracle while maintaining $widetilde{O}(sqrt{T})$-regret.
Link prediction is one of the fundamental problems in computational social science. A particularly common means to predict existence of unobserved links is via structural similarity metrics, such as the number of common neighbors; node pairs with higher similarity are thus deemed more likely to be linked. However, a number of applications of link prediction, such as predicting links in gang or terrorist networks, are adversarial, with another party incentivized to minimize its effectiveness by manipulating observed information about the network. We offer a comprehensive algorithmic investigation of the problem of attacking similarity-based link prediction through link deletion, focusing on two broad classes of such approaches, one which uses only local information about target links, and another which uses global network information. While we show several variations of the general problem to be NP-Hard for both local and global metrics, we exhibit a number of well-motivated special cases which are tractable. Additionally, we provide principled and empirically effective algorithms for the intractable cases, in some cases proving worst-case approximation guarantees.