Do you want to publish a course? Click here

Node-Specific Triad Pattern Mining for Complex-Network Analysis

112   0   0.0 ( 0 )
 Added by Marco Winkler
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

The mining of graphs in terms of their local substructure is a well-established methodology to analyze networks. It was hypothesized that motifs - subgraph patterns which appear significantly more often than expected at random - play a key role for the ability of a system to perform its task. Yet the framework commonly used for motif-detection averages over the local environments of all nodes. Therefore, it remains unclear whether motifs are overrepresented in the whole system or only in certain regions. In this contribution, we overcome this limitation by mining node-specific triad patterns. For every vertex, the abundance of each triad pattern is considered only in triads it participates in. We investigate systems of various fields and find that motifs are distributed highly heterogeneously. In particular we focus on the feed-forward loop motif which has been alleged to play a key role in biological networks.



rate research

Read More

66 - Marco Winkler 2015
The detection of triadic subgraph motifs is a common methodology in complex-networks research. The procedure usually applied in order to detect motifs evaluates whether a certain subgraph pattern is overrepresented in a network as a whole. However, motifs do not necessarily appear frequently in every region of a graph. For this reason, we recently introduced the framework of Node-Specific Pattern Mining (NoSPaM). This work is a manual for an implementation of NoSPaM which can be downloaded from www.mwinkler.eu.
74 - Palash Dey , Sourav Medya 2019
Node similarity measures quantify how similar a pair of nodes are in a network. These similarity measures turn out to be an important fundamental tool for many real world applications such as link prediction in networks, recommender systems etc. An important class of similarity measures are local similarity measures. Two nodes are considered similar under local similarity measures if they have large overlap between their neighboring set of nodes. Manipulating node similarity measures via removing edges is an important problem. This type of manipulation, for example, hinders effectiveness of link prediction in terrorists networks. Fortunately, all the popular computational problems formulated around manipulating similarity measures turn out to be NP-hard. We, in this paper, provide fine grained complexity results of these problems through the lens of parameterized complexity. In particular, we show that some of these problems are fixed parameter tractable (FPT) with respect to various natural parameters whereas other problems remain intractable W[1]-hard and W[2]-hard in particular). Finally we show the effectiveness of our proposed FPT algorithms on real world datasets as well as synthetic networks generated using Barabasi-Albert and Erdos-Renyi models.
Networks are used as highly expressive tools in different disciplines. In recent years, the analysis and mining of temporal networks have attracted substantial attention. Frequent pattern mining is considered an essential task in the network science literature. In addition to the numerous applications, the investigation of frequent pattern mining in networks directly impacts other analytical approaches, such as clustering, quasi-clique and clique mining, and link prediction. In nearly all the algorithms proposed for frequent pattern mining in temporal networks, the networks are represented as sequences of static networks. Then, the inter- or intra-network patterns are mined. This type of representation imposes a computation-expressiveness trade-off to the mining problem. In this paper, we propose a novel representation that can preserve the temporal aspects of the network losslessly. Then, we introduce the concept of constrained interval graphs (CIGs). Next, we develop a series of algorithms for mining the complete set of frequent temporal patterns in a temporal network data set. We also consider four different definitions of isomorphism to allow noise tolerance in temporal data collection. Implementing the algorithm for three real-world data sets proves the practicality of the proposed algorithm and its capability to discover unknown patterns in various settings.
Temporal graphs are ubiquitous. Mining communities that are bursting in a period of time is essential to seek emergency events in temporal graphs. Unfortunately, most previous studies for community mining in temporal networks ignore the bursting patterns of communities. In this paper, we are the first to study a problem of seeking bursting communities in a temporal graph. We propose a novel model, called (l, {delta})-maximal dense core, to represent a bursting community in a temporal graph. Specifically, an (l, {delta})-maximal dense core is a temporal subgraph in which each node has average degree no less than {delta} in a time segment with length no less than l. To compute the (l, {delta})-maximal dense core, we first develop a novel dynamic programming algorithm which can calculate the segment density efficiently. Then, we propose an improved algorithm with several novel pruning techniques to further improve the efficiency. In addition, we also develop an efficient algorithm to enumerate all (l, {delta})-maximal dense cores that are not dominated by the others in terms of the parameters l and {delta}. The results of extensive experiments on 9 real-life datasets demonstrate the effectiveness, efficiency and scalability of our algorithms.
When analyzing temporal networks, a fundamental task is the identification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). We tackle this task by introducing a notion of temporal core decomposition where each core is associated with its span: we call such cores span-cores. As the total number of time intervals is quadratic in the size of the temporal domain $T$ under analysis, the total number of span-cores is quadratic in $|T|$ as well. Our first contribution is an algorithm that, by exploiting containment properties among span-cores, computes all the span-cores efficiently. Then, we focus on the problem of finding only the maximal span-cores, i.e., span-cores that are not dominated by any other span-core by both the coreness property and the span. We devise a very efficient algorithm that exploits theoretical findings on the maximality condition to directly compute the maximal ones without computing all span-cores. Experimentation on several real-world temporal networks confirms the efficiency and scalability of our methods. Applications on temporal networks, gathered by a proximity-sensing infrastructure recording face-to-face interactions in schools, highlight the relevance of the notion of (maximal) span-core in analyzing social dynamics and detecting/correcting anomalies in the data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا