Do you want to publish a course? Click here

Attacking Similarity-Based Link Prediction in Social Networks

116   0   0.0 ( 0 )
 Added by Kai Zhou
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Link prediction is one of the fundamental problems in computational social science. A particularly common means to predict existence of unobserved links is via structural similarity metrics, such as the number of common neighbors; node pairs with higher similarity are thus deemed more likely to be linked. However, a number of applications of link prediction, such as predicting links in gang or terrorist networks, are adversarial, with another party incentivized to minimize its effectiveness by manipulating observed information about the network. We offer a comprehensive algorithmic investigation of the problem of attacking similarity-based link prediction through link deletion, focusing on two broad classes of such approaches, one which uses only local information about target links, and another which uses global network information. While we show several variations of the general problem to be NP-Hard for both local and global metrics, we exhibit a number of well-motivated special cases which are tractable. Additionally, we provide principled and empirically effective algorithms for the intractable cases, in some cases proving worst-case approximation guarantees.



rate research

Read More

Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 cite{xu2016}), we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight, and propose a weighted prediction index based on the contributions of paths, namely Weighted Path Entropy (WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three typical weighted indices.
143 - Zhihao Wu , Youfang Lin , Yao Zhao 2015
Link prediction in complex network based on solely topological information is a challenging problem. In this paper, we propose a novel similarity index, which is efficient and parameter free, based on clustering ability. Here clustering ability is defined as average clustering coefficient of nodes with the same degree. The motivation of our idea is that common-neighbors are able to contribute to the likelihood of forming a link because they own some ability of clustering their neighbors together, and then clustering ability defined here is a measure for this capacity. Experimental numerical simulations on both real-world networks and modeled networks demonstrated the high accuracy and high efficiency of the new similarity index compared with three well-known common-neighbor based similarity indices: CN, AA and RA.
76 - Cunlai Pu , Jie Li , Jian Wang 2017
Over the years, quantifying the similarity of nodes has been a hot topic in complex networks, yet little has been known about the distributions of node-similarity. In this paper, we consider a typical measure of node-similarity called the common neighbor based similarity (CNS). By means of the generating function, we propose a general framework for calculating the CNS distributions of node sets in various complex networks. In particular, we show that for the Erd{o}s-R{e}nyi (ER) random network, the CNS distribution of node sets of any particular size obeys the Poisson law. We also connect the node-similarity distribution to the link prediction problem. We found that the performance of link prediction depends solely on the CNS distributions of the connected and unconnected node pairs in the network. Furthermore, we derive theoretical solutions of two key evaluation metrics in link prediction: i) precision and ii) area under the receiver operating characteristic curve (AUC). We show that for any link prediction method, if the similarity distributions of the connected and unconnected node pairs are identical, the AUC will be $0.5$. The theoretical solutions are elegant alternatives of the traditional experimental evaluation methods with nevertheless much lower computational cost.
117 - Zhepeng Li , Xiao Fang , Xue Bai 2015
Link recommendation, which suggests links to connect currently unlinked users, is a key functionality offered by major online social networks. Salient examples of link recommendation include People You May Know on Facebook and LinkedIn as well as You May Know on Google+. The main stakeholders of an online social network include users (e.g., Facebook users) who use the network to socialize with other users and an operator (e.g., Facebook Inc.) that establishes and operates the network for its own benefit (e.g., revenue). Existing link recommendation methods recommend links that are likely to be established by users but overlook the benefit a recommended link could bring to an operator. To address this gap, we define the utility of recommending a link and formulate a new research problem - the utility-based link recommendation problem. We then propose a novel utility-based link recommendation method that recommends links based on the value, cost, and linkage likelihood of a link, in contrast to existing link recommendation methods which focus solely on linkage likelihood. Specifically, our method models the dependency relationship between value, cost, linkage likelihood and utility-based link recommendation decision using a Bayesian network, predicts the probability of recommending a link with the Bayesian network, and recommends links with the highest probabilities. Using data obtained from a major U.S. online social network, we demonstrate significant performance improvement achieved by our method compared to prevalent link recommendation methods from representative prior research.
State-of-the-art link prediction utilizes combinations of complex features derived from network panel data. We here show that computationally less expensive features can achieve the same performance in the common scenario in which the data is available as a sequence of interactions. Our features are based on social vector clocks, an adaptation of the vector-clock concept introduced in distributed computing to social interaction networks. In fact, our experiments suggest that by taking into account the order and spacing of interactions, social vector clocks exploit different aspects of link formation so that their combination with previous approaches yields the most accurate predictor to date.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا