Do you want to publish a course? Click here

Online Influence Maximization with Node-level Feedback Using Standard Offline Oracles

160   0   0.0 ( 0 )
 Added by Zhijie Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the online influence maximization (OIM) problem in social networks, where in multiple rounds the learner repeatedly chooses seed nodes to generate cascades, observes the cascade feedback, and gradually learns the best seeds that generate the largest cascade. We focus on two major challenges in this paper. First, we work with node-level feedback instead of edge-level feedback. The edge-level feedback reveals all edges that pass through information in a cascade, where the node-level feedback only reveals the activated nodes with timestamps. The node-level feedback is arguably more realistic since in practice it is relatively easy to observe who is influenced but very difficult to observe from which relationship (edge) the influence comes from. Second, we use standard offline oracle instead of offline pair-oracle. To compute a good seed set for the next round, an offline pair-oracle finds the best seed set and the best parameters within the confidence region simultaneously, and such an oracle is difficult to compute due to the combinatorial core of OIM problem. So we focus on how to use the standard offline influence maximization oracle which finds the best seed set given the edge parameters as input. In this paper, we resolve these challenges for the two most popular diffusion models, the independent cascade (IC) and the linear threshold (LT) model. For the IC model, the past research only achieves edge-level feedback, while we present the first $widetilde{O}(sqrt{T})$-regret algorithm for the node-level feedback. Besides, the algorithm only invokes standard offline oracles. For the LT model, a recent study only provides an OIM solution that meets the first challenge but still requires a pair-oracle. In this paper, we apply a similar technique as in the IC model to replace the pair-oracle with a standard oracle while maintaining $widetilde{O}(sqrt{T})$-regret.



rate research

Read More

153 - Yixin Bao , Xiaoke Wang , Zhi Wang 2016
Social networks have been popular platforms for information propagation. An important use case is viral marketing: given a promotion budget, an advertiser can choose some influential users as the seed set and provide them free or discounted sample products; in this way, the advertiser hopes to increase the popularity of the product in the users friend circles by the world-of-mouth effect, and thus maximizes the number of users that information of the production can reach. There has been a body of literature studying the influence maximization problem. Nevertheless, the existing studies mostly investigate the problem on a one-off basis, assuming fixed known influence probabilities among users, or the knowledge of the exact social network topology. In practice, the social network topology and the influence probabilities are typically unknown to the advertiser, which can be varying over time, i.e., in cases of newly established, strengthened or weakened social ties. In this paper, we focus on a dynamic non-stationary social network and design a randomized algorithm, RSB, based on multi-armed bandit optimization, to maximize influence propagation over time. The algorithm produces a sequence of online decisions and calibrates its explore-exploit strategy utilizing outcomes of previous decisions. It is rigorously proven to achieve an upper-bounded regret in reward and applicable to large-scale social networks. Practical effectiveness of the algorithm is evaluated using both synthetic and real-world datasets, which demonstrates that our algorithm outperforms previous stationary methods under non-stationary conditions.
We propose a detailed analysis of the online-learning problem for Independent Cascade (IC) models under node-level feedback. These models have widespread applications in modern social networks. Existing works for IC models have only shed light on edge-level feedback models, where the agent knows the explicit outcome of every observed edge. Little is known about node-level feedback models, where only combined outcomes for sets of edges are observed; in other words, the realization of each edge is censored. This censored information, together with the nonlinear form of the aggregated influence probability, make both parameter estimation and algorithm design challenging. We establish the first confidence-region result under this setting. We also develop an online algorithm achieving a cumulative regret of $mathcal{O}( sqrt{T})$, matching the theoretical regret bound for IC models with edge-level feedback.
In real-world applications of influence maximization (IM), the network structure is often unknown. In this case, we may identify the most influential seed nodes by exploring only a part of the underlying network given a small budget for node queries. Motivated by the fact that collecting node metadata is more cost-effective than investigating the relationship between nodes via queried nodes, we develop IM-META, an end-to-end solution to IM in networks with unknown topology by retrieving information from both queries and node metadata. However, using such metadata to aid the IM process is not without risk due to the noisy nature of metadata and uncertainties in connectivity inference. To tackle these challenges, we formulate an IM problem that aims to find two sets, i.e., seed nodes and queried nodes. We propose an effective method that iteratively performs three steps: 1) we learn the relationship between collected metadata and edges via a Siamese neural network model, 2) we select a number of inferred influential edges to construct a reinforced graph used for discovering an optimal seed set, and 3) we identify the next node to query by maximizing the inferred influence spread using a topology-aware ranking strategy. By querying only 5% of nodes, IM-META reaches 93% of the upper bound performance.
Influence maximization, fundamental for word-of-mouth marketing and viral marketing, aims to find a set of seed nodes maximizing influence spread on social network. Early methods mainly fall into two paradigms with certain benefits and drawbacks: (1)Greedy algorithms, selecting seed nodes one by one, give a guaranteed accuracy relying on the accurate approximation of influence spread with high computational cost; (2)Heuristic algorithms, estimating influence spread using efficient heuristics, have low computational cost but unstable accuracy. We first point out that greedy algorithms are essentially finding a self-consistent ranking, where nodes ranks are consistent with their ranking-based marginal influence spread. This insight motivates us to develop an iterative ranking framework, i.e., IMRank, to efficiently solve influence maximization problem under independent cascade model. Starting from an initial ranking, e.g., one obtained from efficient heuristic algorithm, IMRank finds a self-consistent ranking by reordering nodes iteratively in terms of their ranking-based marginal influence spread computed according to current ranking. We also prove that IMRank definitely converges to a self-consistent ranking starting from any initial ranking. Furthermore, within this framework, a last-to-first allocating strategy and a generalization of this strategy are proposed to improve the efficiency of estimating ranking-based marginal influence spread for a given ranking. In this way, IMRank achieves both remarkable efficiency and high accuracy by leveraging simultaneously the benefits of greedy algorithms and heuristic algorithms. As demonstrated by extensive experiments on large scale real-world social networks, IMRank always achieves high accuracy comparable to greedy algorithms, with computational cost reduced dramatically, even about $10-100$ times faster than other scalable heuristics.
Influence maximization, defined as a problem of finding a set of seed nodes to trigger a maximized spread of influence, is crucial to viral marketing on social networks. For practical viral marketing on large scale social networks, it is required that influence maximization algorithms should have both guaranteed accuracy and high scalability. However, existing algorithms suffer a scalability-accuracy dilemma: conventional greedy algorithms guarantee the accuracy with expensive computation, while the scalable heuristic algorithms suffer from unstable accuracy. In this paper, we focus on solving this scalability-accuracy dilemma. We point out that the essential reason of the dilemma is the surprising fact that the submodularity, a key requirement of the objective function for a greedy algorithm to approximate the optimum, is not guaranteed in all conventional greedy algorithms in the literature of influence maximization. Therefore a greedy algorithm has to afford a huge number of Monte Carlo simulations to reduce the pain caused by unguaranteed submodularity. Motivated by this critical finding, we propose a static greedy algorithm, named StaticGreedy, to strictly guarantee the submodularity of influence spread function during the seed selection process. The proposed algorithm makes the computational expense dramatically reduced by two orders of magnitude without loss of accuracy. Moreover, we propose a dynamical update strategy which can speed up the StaticGreedy algorithm by 2-7 times on large scale social networks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا