No Arabic abstract
We determine the general structure of quantum anomalies for the $R$-multiplet of four dimensional $mathcal{N}=1$ supersymmetric quantum field theories in the presence of background fields for an arbitrary number of Abelian flavor multiplets. By solving the Wess-Zumino consistency conditions for off-shell new minimal supergravity in four dimensions with an arbitrary number of Abelian vector multiplets, we compute the anomaly in the conservation of the supercurrent to leading non trivial order in the gravitino and vector multiplet fermions. We find that both $R$-symmetry and flavor anomalies necessarily lead to a supersymmetry anomaly, thus generalizing our earlier results to non superconformal theories with Abelian flavor symmetries. The anomaly in the conservation of the supercurrent leads to an anomalous transformation for the supercurrent under rigid supersymmetry on bosonic backgrounds that admit new minimal Killing spinors. The resulting deformation of the supersymmetry algebra has implications for supersymmetric localization computations on such backgrounds.
We solve the Wess-Zumino consistency conditions of $mathcal{N}=1$ off-shell conformal supergravity in four dimensions and determine the general form of the superconformal anomalies for arbitrary $a$ and $c$ anomaly coefficients to leading non trivial order in the gravitino. Besides the well known Weyl and $R$-symmetry anomalies, we compute explicitly the fermionic $mathcal{Q}$- and $mathcal{S}$-supersymmetry anomalies. In particular, we show that $mathcal{Q}$-supersymmetry is anomalous if and only if $R$-symmetry is anomalous. The $mathcal{Q}$- and $mathcal{S}$-supersymmetry anomalies give rise to an anomalous supersymmetry transformation for the supercurrent on curved backgrounds admitting Killing spinors, resulting in a deformed rigid supersymmetry algebra. Our results may have implications for supersymmetric localization and supersymmetry phenomenology. Analogous results are expected to hold in dimensions two and six and for other supergravity theories. The present analysis of the Wess-Zumino consistency conditions reproduces the holographic result of arxiv:1703.04299 and generalizes it to arbitrary $a$ and $c$ anomaly coefficients.
In this paper we study some properties of the newly found Arnold-Beltrami flux-brane solutions to the minimal $D=7$ supergravity. To this end we first single out the appropriate Free Differential Algebra containing both a gauge $3$-form $mathbf{B}^{[3]}$ and a gauge $2$-form $mathbf{B}^{[2]}$: then we present the complete rheonomic parametrization of all the generalized curvatures. This allows us to identify two-brane configurations with Arnold-Beltrami fluxes in the transverse space with exact solutions of supergravity and to analyze the Killing spinor equation in their background. We find that there is no preserved supersymmetry if there are no additional translational Killing vectors. Guided by this principle we explicitly construct Arnold-Beltrami flux two-branes that preserve $0$, $1/8$ and $1/4$ of the original supersymmetry. Two-branes without fluxes are instead BPS states and preserve $1/2$ supersymmetry. For each two-brane solution we carefully study its discrete symmetry that is always given by some appropriate crystallographic group $Gamma$. Such symmetry groups $Gamma$ are transmitted to the $D=3$ gauge theories on the brane world--volume that occur in the gauge/gravity correspondence. Furthermore we illustrate the intriguing relation between gauge fluxes in two-brane solutions and hyperinstantons in $D=4$ topological sigma-models.
We revisit quantum field theory anomalies, emphasizing the interplay with diffeomorphisms and supersymmetry. The Ward identities of the latter induce Noether currents of all continuous symmetries, and we point out how these consistent currents are replaced by their covariant form through the appearance of the Bardeen-Zumino currents, which play a central role in our study. For supersymmetry Ward identities, two systematic methods for solving the Wess-Zumino consistency conditions are discussed: anomaly inflow and anomaly descent. The simplest inflows are from supersymmetric Chern-Simons actions in one dimension higher, which are used to supersymmetrize flavor anomalies in $d=4$ and, for $d=2$ $mathcal{N}=(p,q)$, flavor anomalies with $p,qleq 3$ and Lorentz-Weyl anomalies with $p,qleq 6$. Finally, we extend the BRST algebra and the subsequent descent, a necessity for the diffeomorphism anomaly in retrospect. The same modification computes the supersymmetrized anomalies, and determines the above Chern-Simons actions when these exist.
We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called de Sitter supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
We propose a new construction of the supergravity inflation as an UV completion of the Higgs-$R^2$ inflation. In the dual description of $R^2$-supergravity, we show that there appear dual chiral superfields containing the scalaron or sigma field in the Starobinsky inflation, which unitarizes the supersymmetric Higgs inflation with a large non-minimal coupling up to the Planck scale. We find that a successful slow-roll inflation is achievable in the Higgs-sigma field space, but under the condition that higher curvature terms are introduced to cure the tachyonic mass problems for spectator singlet scalar fields. We also discuss supersymmetry breaking and its transmission to the visible sector as a result of the couplings of the dual chiral superfields and the non-minimal gravity coupling of the Higgs fields.