Do you want to publish a course? Click here

Supersymmetry anomalies in $mathcal{N}=1$ conformal supergravity

234   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We solve the Wess-Zumino consistency conditions of $mathcal{N}=1$ off-shell conformal supergravity in four dimensions and determine the general form of the superconformal anomalies for arbitrary $a$ and $c$ anomaly coefficients to leading non trivial order in the gravitino. Besides the well known Weyl and $R$-symmetry anomalies, we compute explicitly the fermionic $mathcal{Q}$- and $mathcal{S}$-supersymmetry anomalies. In particular, we show that $mathcal{Q}$-supersymmetry is anomalous if and only if $R$-symmetry is anomalous. The $mathcal{Q}$- and $mathcal{S}$-supersymmetry anomalies give rise to an anomalous supersymmetry transformation for the supercurrent on curved backgrounds admitting Killing spinors, resulting in a deformed rigid supersymmetry algebra. Our results may have implications for supersymmetric localization and supersymmetry phenomenology. Analogous results are expected to hold in dimensions two and six and for other supergravity theories. The present analysis of the Wess-Zumino consistency conditions reproduces the holographic result of arxiv:1703.04299 and generalizes it to arbitrary $a$ and $c$ anomaly coefficients.



rate research

Read More

We determine the general structure of quantum anomalies for the $R$-multiplet of four dimensional $mathcal{N}=1$ supersymmetric quantum field theories in the presence of background fields for an arbitrary number of Abelian flavor multiplets. By solving the Wess-Zumino consistency conditions for off-shell new minimal supergravity in four dimensions with an arbitrary number of Abelian vector multiplets, we compute the anomaly in the conservation of the supercurrent to leading non trivial order in the gravitino and vector multiplet fermions. We find that both $R$-symmetry and flavor anomalies necessarily lead to a supersymmetry anomaly, thus generalizing our earlier results to non superconformal theories with Abelian flavor symmetries. The anomaly in the conservation of the supercurrent leads to an anomalous transformation for the supercurrent under rigid supersymmetry on bosonic backgrounds that admit new minimal Killing spinors. The resulting deformation of the supersymmetry algebra has implications for supersymmetric localization computations on such backgrounds.
We study the supersymmetry breaking patterns in four-dimensional $mathcal{N}=2$ gauged supergravity. The model contains multiple (Abelian) vector multiplets and a single hypermultiplet which parametrizes SO$(4,1)/{rm{SO}}(4)$ coset. We derive the expressions of two gravitino masses under {it{general}} gaugings and prepotential based on the embedding tensor formalism, and discuss their behaviors in some concrete models. Then we confirm that in a single vector multiplet case, the partial breaking always occurs when the third derivative of the prepotential exists at the vacuum, which is consistent with the result of Ref.~cite{Antoniadis:2018blk}, but we can have several breaking patterns otherwise. The discussion is also generalized to the case of multiple vector multiplets, and we found that the full ($mathcal{N}=0$) breaking occurs even if the third derivative of the prepotential is nontrivial.
We propose Swampland constraints on consistent 5-dimensional ${cal N}=1$ supergravity theories. We focus on a special class of BPS magnetic monopole strings which arise in gravitational theories. The central charges and the levels of current algebras of 2d CFTs on these strings can be calculated by anomaly inflow mechanism and used to provide constraints on the low-energy particle spectrum and the effective action of the 5d supergravity based on unitarity of the worldsheet CFT. In M-theory, where these theories are realized by compactification on Calabi-Yau 3-folds, the special monopole strings arise from wrapped M5-branes on special (semi-ample) 4-cycles in the threefold. We identify various necessary geometric conditions for such cycles to lead to requisite BPS strings and translate these into constraints on the low-energy theories of gravity. These and other geometric conditions, some of which can be related to unitarity constraints on the monopole worldsheet, are additional candidates for Swampland constraints on 5-dimensional ${cal N}=1$ supergravity theories.
We consider Abelian tensor hierarchy in four-dimensional ${cal N}=1$ supergravity in the conformal superspace formalism, where the so-called covariant approach is used to antisymmetric tensor fields. We introduce $p$-form gauge superfields as superforms in the conformal superspace. We solve the Bianchi identities under the constraints for the superforms. As a result, each of form fields is expressed by a single gauge invariant superfield. The action of superforms is shown with the invariant superfields. We also show the relation between the superspace formalism and the superconformal tensor calculus.
110 - Shuntaro Aoki , Henry Liao 2020
We discuss a possibility of restricting parameters in $mathcal{N}=2$ supergravity based on axion observations. We derive conditions that prepotential and gauge couplings should satisfy. Such conditions not only allow us to constrain the theory but also provide the lower bound of $mathcal{N}=2rightarrowmathcal{N}=1$ breaking scale.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا