In this paper we study some properties of the newly found Arnold-Beltrami flux-brane solutions to the minimal $D=7$ supergravity. To this end we first single out the appropriate Free Differential Algebra containing both a gauge $3$-form $mathbf{B}^{[3]}$ and a gauge $2$-form $mathbf{B}^{[2]}$: then we present the complete rheonomic parametrization of all the generalized curvatures. This allows us to identify two-brane configurations with Arnold-Beltrami fluxes in the transverse space with exact solutions of supergravity and to analyze the Killing spinor equation in their background. We find that there is no preserved supersymmetry if there are no additional translational Killing vectors. Guided by this principle we explicitly construct Arnold-Beltrami flux two-branes that preserve $0$, $1/8$ and $1/4$ of the original supersymmetry. Two-branes without fluxes are instead BPS states and preserve $1/2$ supersymmetry. For each two-brane solution we carefully study its discrete symmetry that is always given by some appropriate crystallographic group $Gamma$. Such symmetry groups $Gamma$ are transmitted to the $D=3$ gauge theories on the brane world--volume that occur in the gauge/gravity correspondence. Furthermore we illustrate the intriguing relation between gauge fluxes in two-brane solutions and hyperinstantons in $D=4$ topological sigma-models.
We determine the general structure of quantum anomalies for the $R$-multiplet of four dimensional $mathcal{N}=1$ supersymmetric quantum field theories in the presence of background fields for an arbitrary number of Abelian flavor multiplets. By solving the Wess-Zumino consistency conditions for off-shell new minimal supergravity in four dimensions with an arbitrary number of Abelian vector multiplets, we compute the anomaly in the conservation of the supercurrent to leading non trivial order in the gravitino and vector multiplet fermions. We find that both $R$-symmetry and flavor anomalies necessarily lead to a supersymmetry anomaly, thus generalizing our earlier results to non superconformal theories with Abelian flavor symmetries. The anomaly in the conservation of the supercurrent leads to an anomalous transformation for the supercurrent under rigid supersymmetry on bosonic backgrounds that admit new minimal Killing spinors. The resulting deformation of the supersymmetry algebra has implications for supersymmetric localization computations on such backgrounds.
We construct a family of chiral anomaly-free supergravity theories in D=6 starting from D=7 supergravity with a gauged noncompact R-symmetry, employing a Horava-Witten bulk-plus-boundary construction. The gauged noncompact R-symmetry yields a positive (de Sitter sign) D=6 scalar field potential. Classical anomaly inflow which is needed to cancel boundary-field loop anomalies requires careful consideration of the gravitational, gauge, mixed and local supersymmetry anomalies. Coupling of boundary hypermultiplets requires care with the Sp(1) gauge connection required to obtain quaternionic Kahler target manifolds in D=6. This class of gauged R-symmetry models may be of use as starting points for further compactifications to D=4 that take advantage of the positive scalar potential, such as those proposed in the scenario of supersymmetry in large extra dimensions.
We study the system of equations derived twenty five years ago by B. de Wit and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to gauged N = 8 supergravity in four dimensions. By exploiting the E_7(7) symmetry, we determine the most general solution to this system at each point on the coset space E_7(7)/SU(8). We show that invariants of the general solution are given by the fluxes in eleven-dimensional supergravity. This allows us to both clarify the explicit non-linear ansatze for the fluxes given previously and to fill a gap in the original proof of the consistent truncation. These results are illustrated with several examples.
The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1)^4 truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza-Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S^8. As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS2xM8 geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields.
States on the Coulomb branch of N=4 super-Yang-Mills theory are studied from the point of view of gauged supergravity in five dimensions. These supersymmetric solutions provide examples of consistent truncation from type IIB supergravity in ten dimensions. A mass gap for states created by local operators and perfect screening for external quarks arise in the supergravity approximation. We offer an interpretation of these surprising features in terms of ensembles of brane distributions.