Do you want to publish a course? Click here

A Large-Scale GaP-on-Diamond Integrated Photonics Platform for NV Center-Based Quantum Information

107   0   0.0 ( 0 )
 Added by Michael Gould
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present chip-scale transmission measurements for three key components of a GaP-on-diamond integrated photonics platform: waveguide-coupled disk resonators, directional couplers, and grating couplers. We also present proof-of-principle measurements demonstrating nitrogen-vacancy (NV) center emission coupled into selected devices. The demonstrated device performance, uniformity and yield place the platform in a strong position to realize measurement-based quantum information protocols utilizing the NV center in diamond.



rate research

Read More

151 - Andreas Brenneis 2014
Nonradiative transfer processes are often regarded as loss channels for an optical emitter1, since they are inherently difficult to be experimentally accessed. Recently, it has been shown that emitters, such as fluorophores and nitrogen vacancy centers in diamond, can exhibit a strong nonradiative energy transfer to graphene. So far, the energy of the transferred electronic excitations has been considered to be lost within the electron bath of the graphene. Here, we demonstrate that the trans-ferred excitations can be read-out by detecting corresponding currents with picosecond time resolution. We electrically detect the spin of nitrogen vacancy centers in diamond electronically and con-trol the nonradiative transfer to graphene by electron spin resonance. Our results open the avenue for incorporating nitrogen vacancy centers as spin qubits into ultrafast electronic circuits and for harvesting non-radiative transfer processes electronically.
To develop a new generation of high-speed photonic modulators on silicon-technology-based photonics, new materials with large Pockels coefficients have been transferred to silicon substrates. Previous approaches focus on realizing stand-alone devices on dedicated silicon substrates, incompatible with the fabrication process in silicon foundries. In this work, we demonstrate monolithic integration of electro-optic modulators based on the Pockels effect in barium titanate (BTO) thin films into the back-end-of-line of a photonic integrated circuit (PIC) platform. Molecular wafer bonding allows fully PIC-compatible integration of BTO-based devices and is, as shown, scalable to 200 mm wafers. The PIC-integrated BTO Mach-Zehnder modulators outperform conventional Si photonic modulators in modulation efficiency, losses, and static tuning power. The devices show excellent V{pi}L (0.2 Vcm) and V{pi}L{alpha} (1.3 VdB), work at high speed (25 Gbps), and can be tuned at low static power consumption (100 nW). Our concept demonstrates the possibility of monolithic integration of Pockels-based electro-optic modulators in advanced silicon photonic platforms. {c} 2019 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved. https://www.osapublishing.org/jlt/abstract.cfm?URI=jlt-37-5-1456 Publication date: March 1, 2019 This work was supported in part by the European Union (EU) under Horizon 2020 grant agreements no. H2020-ICT-2015-25-688579 (PHRESCO) and H2020-ICT-2017-1-780997 (plaCMOS).
Open Fabry-Perot microcavities represent a promising route for achieving a quantum electrodynamics (cavity-QED) platform with diamond-based emitters. In particular, they offer the opportunity to introduce high purity, minimally fabricated material into a tunable, high quality factor optical resonator. Here, we demonstrate a fiber-based microcavity incorporating a thick (> 10 {mu}m) diamond membrane with a finesse of 17,000, corresponding to a quality factor Q ~ $10^6$. Such minimally fabricated, thick samples can contain optically stable emitters similar to those found in bulk diamond. We observe modified microcavity spectra in the presence of the membrane, and develop analytic and numerical models to describe the effect of the membrane on cavity modes, including loss and coupling to higher-order transverse modes. We estimate that a Purcell enhancement of approximately 20 should be possible for emitters within the diamond in this device, and provide evidence that better diamond surface treatments and mirror coatings could increase this value to 200 in a realistic system.
High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission into propagating surface plasmon polariton (SPP) modes narrowing NV centers broad emission bandwidth with enhanced coupling efficiency. The cavity resonator consists of two distributed Bragg mirrors that are built at opposite sides of the coupled NV emitter and are integrated with a dielectric-loaded SPP waveguide (DLSPPW), using electron-beam lithography of hydrogen silsesquioxane resist deposited on silver-coated silicon substrates. A quality factor of ~ 70 for the cavity (full width at half maximum ~ 10 nm) with full tunability of the resonance wavelength is demonstrated. An up to 42-fold decay rate enhancement of the spontaneous emission at the cavity resonance is achieved, indicating high DLSPPW mode confinement.
190 - Disheng Chen , Zhao Mu , Yu Zhou 2019
Scalable quantum photonic networks require coherent excitation of quantum emitters. However, many solid-state systems can undergo a transition to a dark shelving state that inhibits the fluorescence. Here we demonstrate that a controlled gating using a weak non-resonant laser, the resonant excitation can be recovered and amplified for single germanium vacancies (GeVs). Employing the gated resonance excitation, we achieve optically stable resonance fluorescence of GeV centers. Our results are pivotal for the deployment of diamond color centers as reliable building blocks for scalable solid state quantum networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا