Do you want to publish a course? Click here

Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission

88   0   0.0 ( 0 )
 Added by Hamidreza Siampour
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission into propagating surface plasmon polariton (SPP) modes narrowing NV centers broad emission bandwidth with enhanced coupling efficiency. The cavity resonator consists of two distributed Bragg mirrors that are built at opposite sides of the coupled NV emitter and are integrated with a dielectric-loaded SPP waveguide (DLSPPW), using electron-beam lithography of hydrogen silsesquioxane resist deposited on silver-coated silicon substrates. A quality factor of ~ 70 for the cavity (full width at half maximum ~ 10 nm) with full tunability of the resonance wavelength is demonstrated. An up to 42-fold decay rate enhancement of the spontaneous emission at the cavity resonance is achieved, indicating high DLSPPW mode confinement.



rate research

Read More

The nitrogen-vacancy center in diamond has been explored extensively as a light-matter interface for quantum information applications, however it is limited by low coherent photon emission and spectral instability. Here, we present a promising interface based on an alternate defect with superior optical properties (the germanium-vacancy) coupled to a finesse $approx11{,}000$ fiber cavity, resulting in a $31^{+11}_{-15}$-fold increase in the spectral density of emission. This work sets the stage for cryogenic experiments, where we predict a measurable increase in the spontaneous emission rate.
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolution with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.
Monolithic integration of quantum emitters in nanoscale plasmonic circuitry requires low-loss plasmonic configurations capable of confining light well below the diffraction limit. We demonstrate on-chip remote excitation of nanodiamond-embedded single quantum emitters by plasmonic modes of dielectric ridges atop colloidal silver crystals. The nanodiamonds are produced to incorporate single germanium-vacancy (GeV) centers, providing bright, spectrally narrow and stable single-photon sources suitable for highly integrated circuits. Using electron-beam lithography with hydrogen silsesquioxane (HSQ) resist, dielectric-loaded surface plasmon polariton waveguides (DLSPPWs) are fabricated on single crystalline silver plates so as to contain those of spin-casted nanodiamonds that are found to feature appropriate single GeV centers. The low-loss plasmonic configuration enabled the 532 nm pump laser light to propagate on-chip in the DLSPPW and reach to an embedded nanodiamond where a single GeV center is incorporated. The remote GeV emitter is thereby excited and coupled to spatially confined DLSPPW modes with an outstanding figure-of-merit of 180 due to a ~6-fold Purcell enhancement, ~56% coupling efficiency and ~33 {mu}m transmission length, revealing the potential of our approach for on-chip realization of nanoscale functional quantum devices.
Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.
Single photon sources are an integral part of various quantum technologies, and solid state quantum emitters at room temperature appear as a promising implementation. We couple the fluorescence of individual silicon vacancy centers in nanodiamonds to a tunable optical microcavity to demonstrate a single photon source with high efficiency, increased emission rate, and improved spectral purity compared to the intrinsic emitter properties. We use a fiber-based microcavity with a mode volume as small as $3.4~lambda^3$ and a quality factor of $1.9times 10^4$ and observe an effective Purcell factor of up to 9.2. We furthermore study modifications of the internal rate dynamics and propose a rate model that closely agrees with the measurements. We observe lifetime changes of up to 31%, limited by the finite quantum efficiency of the emitters studied here. With improved materials, our achieved parameters predict single photon rates beyond 1 GHz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا