No Arabic abstract
To develop a new generation of high-speed photonic modulators on silicon-technology-based photonics, new materials with large Pockels coefficients have been transferred to silicon substrates. Previous approaches focus on realizing stand-alone devices on dedicated silicon substrates, incompatible with the fabrication process in silicon foundries. In this work, we demonstrate monolithic integration of electro-optic modulators based on the Pockels effect in barium titanate (BTO) thin films into the back-end-of-line of a photonic integrated circuit (PIC) platform. Molecular wafer bonding allows fully PIC-compatible integration of BTO-based devices and is, as shown, scalable to 200 mm wafers. The PIC-integrated BTO Mach-Zehnder modulators outperform conventional Si photonic modulators in modulation efficiency, losses, and static tuning power. The devices show excellent V{pi}L (0.2 Vcm) and V{pi}L{alpha} (1.3 VdB), work at high speed (25 Gbps), and can be tuned at low static power consumption (100 nW). Our concept demonstrates the possibility of monolithic integration of Pockels-based electro-optic modulators in advanced silicon photonic platforms. {c} 2019 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved. https://www.osapublishing.org/jlt/abstract.cfm?URI=jlt-37-5-1456 Publication date: March 1, 2019 This work was supported in part by the European Union (EU) under Horizon 2020 grant agreements no. H2020-ICT-2015-25-688579 (PHRESCO) and H2020-ICT-2017-1-780997 (plaCMOS).
Electro-optic signal modulation provides a key functionality in modern technology and information networks. Photonic integration has enabled not only miniaturizing photonic components, but also provided performance improvements due to co-design addressing both electrical and optical device rules. However the millimeter-to-centimeter large footprint of many foundry-ready photonic electro-optic modulators significantly limits scaling density. Furthermore, modulators bear a fundamental a frequency-response to energy-sensitive trade-off, a limitation that can be overcome with coupling-based modulators where the temporal response speed is decoupled from the optical cavity photo lifetime. Thus, the coupling effect to the resonator is modulated rather then tuning the index of the resonator itself. However, the weak electro-optic response of silicon limits such coupling modulator performance, since the micrometer-short overlap region of the waveguide-bus and a microring resonator is insufficient to induce signal modulation. To address these limitations, here we demonstrate a coupling-controlled electro-optic modulator by heterogeneously integrating a dual-gated indium-tin-oxide (ITO) phase shifter placed at the silicon microring-bus coupler region. Our experimental modulator shows about 4 dB extinction ratio on resonance, and a about 1.5 dB off resonance with a low insertion loss of 0.15 dB for a just 4 {mu}m short device demonstrating a compact high 10:1 modulation-to-loss ratio. In conclusion we demonstrate a coupling modulator using strongly index-changeable materials enabling compact and high-performing modulators using semiconductor foundry-near materials.
High performance integrated electro-optic modulators operating at low temperature are critical for optical interconnects in cryogenic applications. Existing integrated modulators, however, suffer from reduced modulation efficiency or bandwidth at low temperatures because they rely on tuning mechanisms that degrade with decreasing temperature. Graphene modulators are a promising alternative, since graphenes intrinsic carrier mobility increases at low temperature. Here we demonstrate an integrated graphene-based electro-optic modulator whose 14.7 GHz bandwidth at 4.9 K exceeds the room-temperature bandwidth of 12.6 GHz. The bandwidth of the modulator is limited only by high contact resistance, and its intrinsic RC-limited bandwidth is 200 GHz at 4.9 K.
Electro-optic modulators transform electronic signals into the optical domain and are critical components in modern telecommunication networks, RF photonics, and emerging applications in quantum photonics and beam steering. All these applications require integrated and voltage-efficient modulator solutions with compact formfactors that are seamlessly integratable with Silicon photonics platforms and feature near-CMOS material processing synergies. However, existing integrated modulators are challenged to meet these requirements. Conversely, emerging electro-optic materials heterogeneously integrated with Si photonics open a new avenue for device engineering. Indium tin oxide (ITO) is one such compelling material for heterogeneous integration in Si exhibiting formidable electro-optic effect characterized by unity order index at telecommunication frequencies. Here we overcome these limitations and demonstrate a monolithically integrated ITO electro- optic modulator based on a Mach Zehnder interferometer (MZI) featuring a high-performance half-wave voltage and active device length product, VpL = 0.52 V-mm. We show, how that the unity-strong index change enables a 30 micrometer-short pi-phase shifter operating ITO in the index-dominated region away from the epsilon-bear-zero ENZ point. This device experimentally confirms electrical phase shifting in ITO enabling its use in multifaceted applications including dense on-chip communication networks, nonlinearity for activation functions in photonic neural networks, and phased array applications for LiDAR.
Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metrics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here we make an important step towards miniaturizing functional components on this platform, reporting probably the smallest high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz/V, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58 $mu {rm m}^3$. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb/s with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics.
Integrated electrical and photonic circuits (PIC) operating at cryogenic temperatures are fundamental building blocks required to achieve scalable quantum computing, and cryogenic computing technologies. Optical interconnects offer better performance and thermal insulation than electrical wires and are imperative for true quantum communication. Silicon PICs have matured for room temperature applications but their cryogenic performance is limited by the absence of efficient low temperature electro-optic (EO) modulation. While detectors and lasers perform better at low temperature, cryogenic optical switching remains an unsolved challenge. Here we demonstrate EO switching and modulation from room temperature down to 4 K by using the Pockels effect in integrated barium titanate (BaTiO3)-based devices. We report the nonlinear optical (NLO) properties of BaTiO3 in a temperature range which has previously not been explored, showing an effective Pockels coefficient of 200 pm/V at 4 K. We demonstrate the largest EO bandwidth (30 GHz) of any cryogenic switch to date, ultra-low-power tuning which is 10^9 times more efficient than thermal tuning, and high-speed data modulation at 20 Gbps. Our results demonstrate a missing component for cryogenic PICs. It removes major roadblocks for the realisation of novel cryogenic-compatible systems in the field of quantum computing and supercomputing, and for interfacing those systems with the real world at room-temperature.