No Arabic abstract
Using the tight-binding approximation we calculated the magnetic susceptibility of graphene quantum dots (GQD) of different geometrical shapes and sizes, smaller than the magnetic length, when the magnetic properties are governed by the electron edge states. Two types of edge states can be discerned: the zero-energy states (ZES) located exactly at the zero-energy Dirac point, and the dispersed edge states (DES) with the energy close, but not exactly equal to zero. DES are responsible for the temperature independent diamagnetic response, while ZES provide the temperature dependent spin Curie paramagnetism. The hexagonal, circular and randomly shaped GQDs contain mainly DES and, as a result, they are diamagnetic. The edge states of the triangular GQDs are ZES and these dots reveal the interplay between the spin paramagnetism, dominating for small dots and at low temperatures, and bulk orbital diamagnetism, dominating for large dots and at high temperatures.
We report transport experiments on graphene quantum dots. We focus on excited state spectra in the near vicinity of the charge neutrality point and signatures of the electron-hole crossover as a function of a perpendicular magnetic field. Coulomb blockade resonances of a 50 nm wide and 80 nm long dot are visible at all gate voltages across the transport gap ranging from hole to electron transport. The magnetic field dependence of more than 40 states as a function of the back gate voltage can be interpreted in terms of the unique evolution of the diamagnetic spectrum of a graphene dot including the formation of the E = 0 Landau level, situated in the center of the transport gap, and marking the electron-hole crossover.
We present a tight-binding theory of triangular graphene quantum dots (TGQD) with zigzag edge and broken sublattice symmetry in external magnetic field. The lateral size quantization opens an energy gap and broken sublattice symmetry results in a shell of degenerate states at the Fermi level. We derive a semi-analytical form for zero-energy states in a magnetic field and show that the shell remains degenerate in a magnetic field, in analogy to the 0th Landau level of bulk graphene. The magnetic field closes the energy gap and leads to the crossing of valence and conduction states with the zero-energy states, modulating the degeneracy of the shell. The closing of the gap with increasing magnetic field is present in all graphene quantum dot structures investigated irrespective of shape and edge termination.
We have studied the transport properties of a large graphene double quantum dot under the influence of background disorder potential and magnetic field. At low temperatures, the evolution of the charge-stability diagram as a function of B-field is investigated up to 10 Tesla. Our results indicate that the charging energy of quantum dot is reduced, and hence the size of the dot increases, at high magnetic field. We provide an explanation of our results using a tight-binding model, which describes the charge redistribution in a disordered graphene quantum dot via the formation of Landau levels and edge states. Our model suggests that the tunnel barriers separating different electron/hole puddles in a dot become transparent at high B-fields, resulting in the charge delocalization and reduced charging energy observed experimentally.
The transport through a quantum wire exposed to two magnetic spikes in series is modeled. We demonstrate that quantum dots can be formed this way which couple to the leads via magnetic barriers. Conceptually, all quantum dot states are accessible by transport experiments. The simulations show Breit-Wigner resonances in the closed regime, while Fano resonances appear as soon as one open transmission channel is present. The system allows to tune the dots confinement potential from sub-parabolic to superparabolic by experimentally accessible parameters.
We investigate ground and excited state transport through small (d = 70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the ground state energy as a function of a magnetic field. For a magnetic field in-plane of the quantum dot the Zemann splitting of spin states is measured. The results are compatible with a g-factor of 2 and we detect a spin-filling sequence for a series of states which is reasonable given the strength of exchange interaction effects expected for graphene.