Do you want to publish a course? Click here

Electronic properties of quantum dots formed by magnetic double barriers in quantum wires

302   0   0.0 ( 0 )
 Added by Thomas Heinzel
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transport through a quantum wire exposed to two magnetic spikes in series is modeled. We demonstrate that quantum dots can be formed this way which couple to the leads via magnetic barriers. Conceptually, all quantum dot states are accessible by transport experiments. The simulations show Breit-Wigner resonances in the closed regime, while Fano resonances appear as soon as one open transmission channel is present. The system allows to tune the dots confinement potential from sub-parabolic to superparabolic by experimentally accessible parameters.



rate research

Read More

We address the electronic properties of quantum dots in the two-dimensional $alpha-mathcal{T}_3$ lattice when subjected to a perpendicular magnetic field. Implementing an infinite mass boundary condition, we first solve the eigenvalue problem for an isolated quantum dot in the low-energy, long-wavelength approximation where the system is described by an effective Dirac-like Hamiltonian that interpolates between the graphene (pseudospin 1/2) and Dice (pseudospin 1) limits. Results are compared to a full numerical (finite-mass) tight-binding lattice calculation. In a second step we analyse charge transport through a contacted $alpha-mathcal{T}_3$ quantum dot in a magnetic field by calculating the local density of states and the conductance within the kernel polynomial and Landauer-Buttiker approaches. Thereby the influence of a disordered environment is discussed as well.
We study the nature of excitons bound to I1 basal plane stacking faults in ensembles of ultrathin GaN nanowires by continuous-wave and time-resolved photoluminescence spectroscopy. These ultrathin nanowires, obtained by the thermal decomposition of spontaneously formed GaN nanowire ensembles, are tapered and have tip diameters down to 6 nm. With decreasing nanowire diameter, we observe a strong blue shift of the transition originating from the radiative decay of stacking fault-bound excitons. Moreover, the radiative lifetime of this transition in the ultrathin nanowires is independent of temperature up to 60 K and significantly longer than that of the corresponding transition in as-grown nanowires. These findings reveal a zero-dimensional character of the confined exciton state and thus demonstrate that I1 stacking faults in ultrathin nanowires act as genuine quantum dots.
Double quantum dots (DQDs) hold great promise as building blocks for quantum technology as they allow for two electronic states to coherently couple. Defining QDs with materials rather than using electrostatic gating allows for QDs with a hard-wall confinement potential and more robust charge and spin states. An unresolved problem is how to individually address these quantum dots, which is necessary for controlling quantum states. We here report the fabrication of double quantum dot devices defined by the conduction band edge offset at the interface of the wurtzite and zinc blende crystal phases of InAs in nanowires. By using sacrifical epitaxial GaSb markers selectively forming on one crystal phase, we are able to precisely align gate electrodes allowing us to probe and control each QD independently. We hence observe textbook-like charge stability diagrams, a discrete energy spectrum and electron numbers consistent with theoretical estimates and investigate the tunability of the devices, finding that changing the electron number can be used to tune the tunnel barrier as expected by simple band diagram arguments.
Using the tight-binding approximation we calculated the magnetic susceptibility of graphene quantum dots (GQD) of different geometrical shapes and sizes, smaller than the magnetic length, when the magnetic properties are governed by the electron edge states. Two types of edge states can be discerned: the zero-energy states (ZES) located exactly at the zero-energy Dirac point, and the dispersed edge states (DES) with the energy close, but not exactly equal to zero. DES are responsible for the temperature independent diamagnetic response, while ZES provide the temperature dependent spin Curie paramagnetism. The hexagonal, circular and randomly shaped GQDs contain mainly DES and, as a result, they are diamagnetic. The edge states of the triangular GQDs are ZES and these dots reveal the interplay between the spin paramagnetism, dominating for small dots and at low temperatures, and bulk orbital diamagnetism, dominating for large dots and at high temperatures.
95 - Manvir S Kushwaha 2021
A theoretical investigation has been made of the magnetoplasmon excitations in a quasi-one-dimensional electron system comprised of vertically stacked, self-assembled InAs/GaAs quantum dots. The smaller length scales involved in the experiments impel us to consider a perfectly periodic system of two-dimensionally confined InAs quantum dot layers separated by GaAs spacers. Subsequent system is subjected to a two-dimensional confining (harmonic) potential in the x-y plane and an applied magnetic field (B) in the symmetric gauge. This scheme defines virtually a system of quantum wire comprised of vertically stacked quantum dots (VSQD). We derive and discuss the Dyson equation, the generalized (nonlocal and dynamic) dielectric function, and the inverse dielectric function for investigating the single-particle and collective (magnetoplasmon) excitations within the framework of (full) random-phase approximation (RPA). As an application, we study the influence of the confinement potential and the magnetic field on the component eigenfunctions, the density of states (DOS), the Fermi energy, the collective excitations, and the inverse dielectric functions. These findings demonstrate, for the very first time, the significance of investigating the system of VSQD subjected to a quantizing magnetic field. Given the edge over the planar quantum dots and the foreseen applications in the single-electron devices and quantum computation, investigating the system of VSQD is deemed vital. The results suggest exploiting magnetoplasmon qubits to be a potential option for implementing the solemn idea of quantum state transfer in devising quantum gates for the quantum computation and quantum communication networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا