Do you want to publish a course? Click here

Zero-energy states of graphene triangular quantum dots in a magnetic field

112   0   0.0 ( 0 )
 Added by Pawel Potasz
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a tight-binding theory of triangular graphene quantum dots (TGQD) with zigzag edge and broken sublattice symmetry in external magnetic field. The lateral size quantization opens an energy gap and broken sublattice symmetry results in a shell of degenerate states at the Fermi level. We derive a semi-analytical form for zero-energy states in a magnetic field and show that the shell remains degenerate in a magnetic field, in analogy to the 0th Landau level of bulk graphene. The magnetic field closes the energy gap and leads to the crossing of valence and conduction states with the zero-energy states, modulating the degeneracy of the shell. The closing of the gap with increasing magnetic field is present in all graphene quantum dot structures investigated irrespective of shape and edge termination.



rate research

Read More

Since the discovery of the Fractional Quantum Hall Effect in 1982 there has been considerable theoretical discussion on the possibility of fractional quantization of conductance in the absence of Landau levels formed by a quantizing magnetic field. Although various situations have been theoretically envisaged, particularly lattice models in which band flattening resembles Landau levels, the predicted fractions have never been observed. In this Letter, we show that odd and even denominator fractions can be observed, and manipulated, in the absence of a quantizing magnetic field, when a low-density electron system in a GaAs based one-dimensional quantum wire is allowed to relax in the second dimension. It is suggested that such a relaxation results in formation of a zig-zag array of electrons with ring paths which establish a cyclic current and a resultant lowering of energy. The behavior has been observed for both symmetric and asymmetric confinement but increasing the asymmetry of the confinement potential, to result in a flattening of confinement, enhances the appearance of new fractional states. We find that an in-plane magnetic field induces new even denominator fractions possibly indicative of electron pairing. The new quantum states described here have implications both for the physics of low dimensional electron systems and also for quantum technologies. This work will enable further development of structures which are designed to electrostatically manipulate the electrons for the formation of particular configurations. In turn, this could result in a designer tailoring of fractional states to amplify particular properties of importance in future quantum computation.
We investigate ground and excited state transport through small (d = 70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the ground state energy as a function of a magnetic field. For a magnetic field in-plane of the quantum dot the Zemann splitting of spin states is measured. The results are compatible with a g-factor of 2 and we detect a spin-filling sequence for a series of states which is reasonable given the strength of exchange interaction effects expected for graphene.
122 - G. Sallen , S. Kunz , T. Amand 2013
Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse component of the nuclear spin polarization in the absence of lattice strain i.e. nuclear quadrupole effects, as reproduced by our model calculations.
We study an analytical model of a Rashba nanowire that is partially covered by and coupled to a thin superconducting layer, where the uncovered region of the nanowire forms a quantum dot. We find that, even if there is no topological superconducting phase possible, there is a trivial Andreev bound state that becomes pinned exponentially close to zero energy as a function of magnetic field strength when the length of the quantum dot is tuned with respect to its spin-orbit length such that a resonance condition of Fabry-Perot type is satisfied. In this case, we find that the Andreev bound state remains pinned near zero energy for Zeeman energies that exceed the characteristic spacing between Andreev bound state levels but that are smaller than the spin-orbit energy of the quantum dot. Importantly, as the pinning of the Andreev bound state depends only on properties of the quantum dot, we conclude that this behavior is unrelated to topological superconductivity. To support our analytical model, we also perform a numerical simulation of a hybrid system while explicitly incorporating a thin superconducting layer, showing that all qualitative features of our analytical model are also present in the numerical results.
183 - A. Kurzmann , M. Eich , H. Overweg 2019
We report on ground- and excited state transport through an electrostatically defined few-hole quantum dot in bilayer graphene in both parallel and perpendicular applied magnetic fields. A remarkably clear level scheme for the two-particle spectra is found by analyzing finite bias spectroscopy data within a two-particle model including spin and valley degrees of freedom. We identify the two-hole ground-state to be a spin-triplet and valley-singlet state. This spin alignment can be seen as Hunds rule for a valley-degenerate system, which is fundamentally different to quantum dots in carbon nano tubes and GaAs-based quantum dots. The spin-singlet excited states are found to be valley-triplet states by tilting the magnetic field with respect to the sample plane. We quantify the exchange energy to be 0.35meV and measure a valley and spin g-factor of 36 and 2, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا