Do you want to publish a course? Click here

Reaction Spreading on Graphs

102   0   0.0 ( 0 )
 Added by Sergio Chibbaro
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e. on the time evolution of the reaction product, M(t). At variance with pure diffusive processes, characterized by the spectral dimension, d_s, for reaction spreading the important quantity is found to be the connectivity dimension, d_l. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t) ~ t^{d_l}. In the case of Erdos-Renyi random graphs, the reaction-product is characterized by an exponential growth M(t) ~ e^{a t} with a proportional to ln<k>, where <k> is the average degree of the graph.



rate research

Read More

Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking. A method for constructing analytic expressions for short time moments of the position of the particles is developed and moments calculated from this approach are shown to compare favourably with results from random walk simulations and numerical integration of the reaction transport equation. The results show the important role played by the initial condition. In particular, it strongly affects the time dependence of the moments in the short time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport equation could be applied to study the spreading of a population on an evolving interface.
We study a lattice model for the spreading of fluid films, which are a few molecular layers thick, in narrow channels with inert lateral walls. We focus on systems connected to two particle reservoirs at different chemical potentials, considering an attractive substrate potential at the bottom, confining side walls, and hard-core repulsive fluid-fluid interactions. Using kinetic Monte Carlo simulations we find a diffusive behavior. The corresponding diffusion coefficient depends on the density and is bounded from below by the free one-dimensional diffusion coefficient, valid for an inert bottom wall. These numerical results are rationalized within the corresponding continuum limit.
We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with single spin flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the percolation cluster. For each structure we discuss the scaling properties and compute the dynamical exponents. We show that the exponent $a_chi$ for the integrated response function, at variance with all the other exponents, is independent on temperature and on the presence of pinning. This universal character suggests a strict relation between $a_chi$ and the topological properties of the networks, in analogy to what observed on regular lattices.
Operators in ergodic spin-chains are found to grow according to hydrodynamical equations of motion. The study of such operator spreading has aided our understanding of many-body quantum chaos in spin-chains. Here we initiate the study of operator spreading in quantum maps on a torus, systems which do not have a tensor-product Hilbert space or a notion of spatial locality. Using the perturbed Arnold cat map as an example, we analytically compare and contrast the evolutions of functions on classical phase space and quantum operator evolutions, and identify distinct timescales that characterize the dynamics of operators in quantum chaotic maps. Until an Ehrenfest time, the quantum system exhibits classical chaos, i.e. it mimics the behavior of the corresponding classical system. After an operator scrambling time, the operator looks random in the initial basis, a characteristic feature of quantum chaos. These timescales can be related to the quasi-energy spectrum of the unitary via the spectral form factor. Furthermore, we show examples of emergent classicality in quantum problems far away from the classical limit. Finally, we study operator evolution in non-chaotic and mixed quantum maps using the Chirikov standard map as an example.
118 - Christophe Besse 2020
We propose a new model that describes the dynamics of epidemic spreading on connected graphs. Our model consists in a PDE-ODE system where at each vertex of the graph we have a standard SIR model and connexions between vertices are given by heat equations on the edges supplemented with Robin like boundary conditions at the vertices modeling exchanges between incident edges and the associated vertex. We describe the main properties of the system, and also derive the final total population of infected individuals. We present a semi-implicit in time numerical scheme based on finite differences in space which preserves the main properties of the continuous model such as the uniqueness and positivity of solutions and the conservation of the total population. We also illustrate our results with a selection of numerical simulations for a selection of connected graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا