No Arabic abstract
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking. A method for constructing analytic expressions for short time moments of the position of the particles is developed and moments calculated from this approach are shown to compare favourably with results from random walk simulations and numerical integration of the reaction transport equation. The results show the important role played by the initial condition. In particular, it strongly affects the time dependence of the moments in the short time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport equation could be applied to study the spreading of a population on an evolving interface.
Reaction-diffusion models have been used over decades to study biological systems. In this context, evolution equations for probability distribution functions and the associated stochastic differential equations have nowadays become indispensable tools. In population dynamics, say, such approaches are utilized to study many systems, e.g., colonies of microorganisms or ecological systems. While the majority of studies focus on the case of a static domain, the time-dependent case is also important, as it allows one to deal with situations where the domain growth takes place over time scales that are relevant for the computation of reaction rates and of the associated reactant distributions. Such situations are indeed frequently encountered in the field of developmental biology, notably in connection with pattern formation, embryo growth or morphogen gradient formation. In this chapter, we review some recent advances in the study of pure diffusion processes in growing domains. These results are subsequently taken as a starting point to study the kinetics of a simple reaction-diffusion process, i.e., the encounter-controlled annihilation reaction. The outcome of the present work is expected to pave the way for the study of more complex reaction-diffusion systems of possible relevance in various fields of research.
For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.
Among the main actors of organism development there are morphogens, which are signaling molecules diffusing in the developing organism and acting on cells to produce local responses. Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the signal is itself affected by the changes in shape and size of the organism. In other words, there is a complete coupling between the diffusion of the signal and the change of the shapes. In this paper, we introduce a mathematical model to investigate such coupling. The shape is given by a manifold, that varies in time as the result of a deformation given by a transport equation. The signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie bracket between the diffusion and the transport operator. We also provide numerical simulations showing this phenomenon.
We formulate the generalized master equation for a class of continuous time random walks in the presence of a prescribed deterministic evolution between successive transitions. This formulation is exemplified by means of an advection-diffusion and a jump-diffusion scheme. Based on this master equation, we also derive reaction-diffusion equations for subdiffusive chemical species, using a mean field approximation.
We present a computational approach for solving reaction-diffusion equations on evolving surfaces which have been obtained from cell image data. It is based on finite element spaces defined on surface triangulations extracted from time series of 3D images. A model for the transport of material between the subsequent surfaces is required where we postulate a velocity in normal direction. We apply the technique to image data obtained from a spreading neutrophil cell. By simulating FRAP experiments we investigate the impact of the evolving geometry on the recovery. We find that for idealised FRAP conditions, changes in membrane geometry, easily account for differences of $times 10$ in recovery half-times, which shows that experimentalists must take great care when interpreting membrane photobleaching results. We also numerically solve an activator -- depleted substrate system and report on the effect of the membrane movement on the pattern evolution.