No Arabic abstract
Operators in ergodic spin-chains are found to grow according to hydrodynamical equations of motion. The study of such operator spreading has aided our understanding of many-body quantum chaos in spin-chains. Here we initiate the study of operator spreading in quantum maps on a torus, systems which do not have a tensor-product Hilbert space or a notion of spatial locality. Using the perturbed Arnold cat map as an example, we analytically compare and contrast the evolutions of functions on classical phase space and quantum operator evolutions, and identify distinct timescales that characterize the dynamics of operators in quantum chaotic maps. Until an Ehrenfest time, the quantum system exhibits classical chaos, i.e. it mimics the behavior of the corresponding classical system. After an operator scrambling time, the operator looks random in the initial basis, a characteristic feature of quantum chaos. These timescales can be related to the quasi-energy spectrum of the unitary via the spectral form factor. Furthermore, we show examples of emergent classicality in quantum problems far away from the classical limit. Finally, we study operator evolution in non-chaotic and mixed quantum maps using the Chirikov standard map as an example.
We study the geometrical characteristic of quasi-static fractures in disordered media, using iterated conformal maps to determine the evolution of the fracture pattern. This method allows an efficient and accurate solution of the Lame equations without resorting to lattice models. Typical fracture patterns exhibit increased ramification due to the increase of the stress at the tips. We find the roughness exponent of the experimentally relevant backbone of the fracture pattern; it crosses over from about 0.5 for small scales to about 0.75 for large scales, in excellent agreement with experiments. We propose that this cross-over reflects the increased ramification of the fracture pattern.
The quasi-particle picture is a powerful tool to understand the entanglement spreading in many-body quantum systems after a quench. As an input, the structure of the excitations pattern of the initial state must be provided, the common choice being pairwise-created excitations. However, several cases exile this simple assumption. In this work, we investigate weakly-interacting to free quenches in one dimension. This results in a far richer excitations pattern where multiplets with a larger number of particles are excited. We generalize the quasi-particle ansatz to such a wide class of initial states, providing a small-coupling expansion of the Renyi entropies. Our results are in perfect agreement with iTEBD numerical simulations.
Free or integrable theories are usually considered to be too constrained to thermalize. For example, the retarded two-point function of a free field, even in a thermal state, does not decay to zero at long times. On the other hand, the magnetic susceptibility of the critical transverse field Ising is known to thermalize, even though that theory can be mapped by a Jordan-Wigner transformation to that of free fermions. We reconcile these two statements by clarifying under which conditions conserved charges can prevent relaxation at the level of linear response and how such obstruction can be overcome. In particular, we give a necessary condition for the decay of retarded Greens functions. We give explicit examples of composite operators in free theories that nevertheless satisfy that condition and therefore do thermalize. We call this phenomenon the Operator Thermalization Hypothesis as a converse to the Eigenstate Thermalization Hypothesis.
The quantum kicked rotor (QKR) driven by $d$ incommensurate frequencies realizes the universality class of $d$-dimensional disordered metals. For $d>3$, the system exhibits an Anderson metal-insulator transition which has been observed within the framework of an atom optics realization. However, the absence of genuine randomness in the QKR reflects in critical phenomena beyond those of the Anderson universality class. Specifically, the system shows strong sensitivity to the algebraic properties of its effective Planck constant $tilde h equiv 4pi /q$. For integer $q$, the system may be in a globally integrable state, in a `super-metallic configuration characterized by diverging response coefficients, Anderson localized, metallic, or exhibit transitions between these phases. We present numerical data for different $q$-values and effective dimensionalities, with the focus being on parameter configurations which may be accessible to experimental investigations.
The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3<d<4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T geq 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r, a crossover of the quantum critical shift exponents from the conventional value phi = 1/(d-1) to the new one phi = 1/2(d-1). Besides, the projection in the (r,T)-plane of the phase boundary ending in the quantum tricritical point and crossovers in the quantum tricritical region appear quite similar to those found close to an usual quantum critical point. Another feature of experimental interest is that the amplitude of the Wilsonian classical critical region around this peculiar critical line is sensibly smaller than that expected in the quantum critical scenario. This suggests that the quantum tricriticality is essentially governed by mean-field critical exponents, renormalized by the shift exponent phi = 1/2(d-1) in the quantum tricritical region.