Do you want to publish a course? Click here

Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation

271   0   0.0 ( 0 )
 Added by Remi Carles
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the mass-critical focusing nonlinear Schrodinger equation in the presence of an external potential, when the nonlinearity is inhomogeneous. We show that if the inhomogeneous factor in front of the nonlinearity is sufficiently flat at a critical point, then there exists a solution which blows up in finite time with the maximal (unstable) rate at this point. In the case where the critical point is a maximum, this solution has minimal mass among the blow-up solutions. As a corollary, we also obtain unstable blow-up solutions of the mass-critical Schrodinger equation on some surfaces. The proof is based on properties of the linearized operator around the ground state, and on a full use of the invariances of the equation with an homogeneous nonlinearity and no potential, via time-dependent modulations.



rate research

Read More

75 - Yiming Su , Deng Zhang 2020
We study the focusing mass-critical rough nonlinear Schroedinger equations, where the stochastic integration is taken in the sense of controlled rough path. We obtain the global well-posedness if the mass of initial data is below that of the ground state. Moreover, the existence of minimal mass blow-up solutions is also obtained in both dimensions one and two. In particular, these yield that the mass of ground state is exactly the threshold of global well-posedness and blow-up of solutions in the stochastic focusing mass-critical case. Similar results are also obtained for a class of nonlinear Schroedinger equations with lower order perturbations.
begin{abstract} We show that if the initial profile $qleft( xright) $ for the Korteweg-de Vries (KdV) equation is essentially semibounded from below and $int^{infty }x^{5/2}leftvert qleft( xright) rightvert dx<infty,$ (no decay at $-infty$ is required) then the KdV has a unique global classical solution given by a determinant formula. This result is best known to date. end{abstract}
The paper is devoted to the analysis of the blow-ups of derivatives, gradient catastrophes and dynamics of mappings of $mathbb{R}^n to mathbb{R}^n$ associated with the $n$-dimensional homogeneous Euler equation. Several characteristic features of the multi-dimensional case ($n>1$) are described. Existence or nonexistence of blow-ups in different dimensions, foundness of certain linear combinations of blow-up derivatives and the first occurrence of the gradient catastrophe are among of them. It is shown that the potential solutions of the Euler equations exhibit blow-up derivatives in any dimenson $n$. Several concrete examples in two- and three-dimensional cases are analysed. Properties of $mathbb{R}^n_{underline{u}} to mathbb{R}^n_{underline{x}}$ mappings defined by the hodograph equations are studied, including appearance and disappearance of their singularities.
We study short--time existence, long--time existence, finite speed of propagation, and finite--time blow--up of nonnegative solutions for long-wave unstable thin film equations $h_t = -a_0(h^n h_{xxx})_x - a_1(h^m h_x)_x$ with $n>0$, $a_0 > 0$, and $a_1 >0$. The existence and finite speed of propagation results extend those of [Comm Pure Appl Math 51:625--661, 1998]. For $0<n<2$ we prove the existence of a nonnegative, compactly--supported, strong solution on the line that blows up in finite time. The construction requires that the initial data be nonnegative, compactly supported in $R^1$, be in $H^1(R^1)$, and have negative energy. The blow-up is proven for a large range of $(n,m)$ exponents and extends the results of [Indiana Univ Math J 49:1323--1366, 2000].
274 - Rupert L. Frank , Tobias Konig , 2021
We describe the asymptotic behavior of positive solutions $u_epsilon$ of the equation $-Delta u + au = 3,u^{5-epsilon}$ in $Omegasubsetmathbb{R}^3$ with a homogeneous Dirichlet boundary condition. The function $a$ is assumed to be critical in the sense of Hebey and Vaugon and the functions $u_epsilon$ are assumed to be an optimizing sequence for the Sobolev inequality. Under a natural nondegeneracy assumption we derive the exact rate of the blow-up and the location of the concentration point, thereby proving a conjecture of Brezis and Peletier (1989). Similar results are also obtained for solutions of the equation $-Delta u + (a+epsilon V) u = 3,u^5$ in $Omega$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا