Do you want to publish a course? Click here

Homogeneous Euler equation: blow-ups, gradient catastrophes and singularity of mappings

174   0   0.0 ( 0 )
 Added by Giovanni Ortenzi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The paper is devoted to the analysis of the blow-ups of derivatives, gradient catastrophes and dynamics of mappings of $mathbb{R}^n to mathbb{R}^n$ associated with the $n$-dimensional homogeneous Euler equation. Several characteristic features of the multi-dimensional case ($n>1$) are described. Existence or nonexistence of blow-ups in different dimensions, foundness of certain linear combinations of blow-up derivatives and the first occurrence of the gradient catastrophe are among of them. It is shown that the potential solutions of the Euler equations exhibit blow-up derivatives in any dimenson $n$. Several concrete examples in two- and three-dimensional cases are analysed. Properties of $mathbb{R}^n_{underline{u}} to mathbb{R}^n_{underline{x}}$ mappings defined by the hodograph equations are studied, including appearance and disappearance of their singularities.



rate research

Read More

We study a McKean--Vlasov equation arising from a mean-field model of a particle system with positive feedback. As particles hit a barrier they cause the other particles to jump in the direction of the barrier and this feedback mechanism leads to the possibility that the system can exhibit contagious blow-ups. Using a fixed-point argument we construct a differentiable solution up to a first explosion time. Our main contribution is a proof of uniqueness in the class of c`{a}dl`{a}g functions, which confirms the validity of related propagation-of-chaos results in the literature. We extend the allowed initial conditions to include densities with any power law decay at the boundary, and connect the exponent of decay with the growth exponent of the solution in small time in a precise way. This takes us asymptotically close to the control on initial conditions required for a global solution theory. A novel minimality result and trapping technique are introduced to prove uniqueness.
309 - Valeria Banica 2009
We consider the mass-critical focusing nonlinear Schrodinger equation in the presence of an external potential, when the nonlinearity is inhomogeneous. We show that if the inhomogeneous factor in front of the nonlinearity is sufficiently flat at a critical point, then there exists a solution which blows up in finite time with the maximal (unstable) rate at this point. In the case where the critical point is a maximum, this solution has minimal mass among the blow-up solutions. As a corollary, we also obtain unstable blow-up solutions of the mass-critical Schrodinger equation on some surfaces. The proof is based on properties of the linearized operator around the ground state, and on a full use of the invariances of the equation with an homogeneous nonlinearity and no potential, via time-dependent modulations.
We study short--time existence, long--time existence, finite speed of propagation, and finite--time blow--up of nonnegative solutions for long-wave unstable thin film equations $h_t = -a_0(h^n h_{xxx})_x - a_1(h^m h_x)_x$ with $n>0$, $a_0 > 0$, and $a_1 >0$. The existence and finite speed of propagation results extend those of [Comm Pure Appl Math 51:625--661, 1998]. For $0<n<2$ we prove the existence of a nonnegative, compactly--supported, strong solution on the line that blows up in finite time. The construction requires that the initial data be nonnegative, compactly supported in $R^1$, be in $H^1(R^1)$, and have negative energy. The blow-up is proven for a large range of $(n,m)$ exponents and extends the results of [Indiana Univ Math J 49:1323--1366, 2000].
We find a remarkable subalgebra of higher symmetries of the elliptic Euler-Darboux equation. To this aim we map such equation into its hyperbolic analogue already studied by Shemarulin. Taking into consideration how symmetries and recursion operators transform by this complex contact transformation, we explicitly give the structure of this Lie algebra and prove that it is finitely generated. Furthermore, higher symmetries depending on jets up to second order are explicitly computed.
We derive a new variational principle, leading to a new momentum map and a new multisymplectic formulation for a family of Euler--Poincare equations defined on the Virasoro-Bott group, by using the inverse map (also called `back-to-labels map). This family contains as special cases the well-known Korteweg-de Vries, Camassa-Holm, and Hunter-Saxton soliton equations. In the conclusion section, we sketch opportunities for future work that would apply the new Clebsch momentum map with $2$-cocycles derived here to investigate a new type of interplay among nonlinearity, dispersion and noise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا