Do you want to publish a course? Click here

Research Announcement: Finite-time Blow Up and Long-wave Unstable Thin Film Equations

240   0   0.0 ( 0 )
 Added by Roman Taranets
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study short--time existence, long--time existence, finite speed of propagation, and finite--time blow--up of nonnegative solutions for long-wave unstable thin film equations $h_t = -a_0(h^n h_{xxx})_x - a_1(h^m h_x)_x$ with $n>0$, $a_0 > 0$, and $a_1 >0$. The existence and finite speed of propagation results extend those of [Comm Pure Appl Math 51:625--661, 1998]. For $0<n<2$ we prove the existence of a nonnegative, compactly--supported, strong solution on the line that blows up in finite time. The construction requires that the initial data be nonnegative, compactly supported in $R^1$, be in $H^1(R^1)$, and have negative energy. The blow-up is proven for a large range of $(n,m)$ exponents and extends the results of [Indiana Univ Math J 49:1323--1366, 2000].



rate research

Read More

We study the relation of irregular conformal blocks with the Painleve III$_3$ equation. The functional representation for the quasiclassical irregular block is shown to be consistent with the BPZ equations of conformal field theory and the Hamilton-Jacobi approach to Painleve III$_3$. It leads immediately to a limiting case of the blow-up equations for dual Nekrasov partition function of 4d pure supersymmetric gauge theory, which can be even treated as a defining system of equations for both $c=1$ and $ctoinfty$ conformal blocks. We extend this analysis to the domain of strong-coupling regime where original definition of conformal blocks and Nekrasov functions is not known and apply the results to spectral problem of the Matheiu equations. Finally, we propose a construction of irregular conformal blocks in the strong coupling region by quantization of Painleve III$_3$ equation, and obtain in this way a general expression, reproducing $c=1$ and quasiclassical $ctoinfty$ results as its particular cases. We have also found explicit integral representations for $c=1$ and $c=-2$ irregular blocks at infinity for some special points.
In this technical report, we consider a nonlinear 4th-order degenerate parabolic partial differential equation that arises in modelling the dynamics of an incompressible thin liquid film on the outer surface of a rotating horizontal cylinder in the presence of gravity. The parameters involved determine a rich variety of qualitatively different flows. Depending on the initial data and the parameter values, we prove the existence of nonnegative periodic weak solutions. In addition, we prove that these solutions and their gradients cannot grow any faster than linearly in time; there cannot be a finite-time blow-up. Finally, we present numerical simulations of solutions.
We consider a nonlinear 4th-order degenerate parabolic partial differential equation that arises in modelling the dynamics of an incompressible thin liquid film on the outer surface of a rotating horizontal cylinder in the presence of gravity. The parameters involved determine a rich variety of qualitatively different flows. Depending on the initial data and the parameter values, we prove the existence of nonnegative periodic weak solutions. In addition, we prove that these solutions and their gradients cannot grow any faster than linearly in time; there cannot be a finite-time blow-up. Finally, we present numerical simulations of solutions.
305 - Valeria Banica 2009
We consider the mass-critical focusing nonlinear Schrodinger equation in the presence of an external potential, when the nonlinearity is inhomogeneous. We show that if the inhomogeneous factor in front of the nonlinearity is sufficiently flat at a critical point, then there exists a solution which blows up in finite time with the maximal (unstable) rate at this point. In the case where the critical point is a maximum, this solution has minimal mass among the blow-up solutions. As a corollary, we also obtain unstable blow-up solutions of the mass-critical Schrodinger equation on some surfaces. The proof is based on properties of the linearized operator around the ground state, and on a full use of the invariances of the equation with an homogeneous nonlinearity and no potential, via time-dependent modulations.
The paper is devoted to the analysis of the blow-ups of derivatives, gradient catastrophes and dynamics of mappings of $mathbb{R}^n to mathbb{R}^n$ associated with the $n$-dimensional homogeneous Euler equation. Several characteristic features of the multi-dimensional case ($n>1$) are described. Existence or nonexistence of blow-ups in different dimensions, foundness of certain linear combinations of blow-up derivatives and the first occurrence of the gradient catastrophe are among of them. It is shown that the potential solutions of the Euler equations exhibit blow-up derivatives in any dimenson $n$. Several concrete examples in two- and three-dimensional cases are analysed. Properties of $mathbb{R}^n_{underline{u}} to mathbb{R}^n_{underline{x}}$ mappings defined by the hodograph equations are studied, including appearance and disappearance of their singularities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا