Do you want to publish a course? Click here

Dynamic Black List (DBL) algorithm to defense against DDoS attack in Vehicular Ad-hoc Network

خوارزمية القائمة السوداء الديناميكية للحماية من هجوم حجب الخدمة الموزع DDOS في شبكة العربات المتنقلة

2088   0   30   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

A Vehicular Ad-hoc Network (VANET) is a group of vehicles, which have special equipments enable them to connect with each other as a wireless network .The attacks are considered as the most serious challenge against this network, especially those targeting availability requirement, which is one of the most important security requirements in VANET. The Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are the most important attacks since they make the network not available for actual users. In this research, we present an algorithm to detect and face the DDoS attack. This algorithm depends on a black list contains the IDs for malicious vehicles, which are being chosen depending on a certain threshold value for a number of messages received from them. We analyze the algorithm performance depending on throughput, packet delivery ratio, end to end delay parameters, and compare it with the performance of the Queue Limiting Algorithm (QLA) .To achieve this purpose, we use NS2.35 simulator using details to support Wireless Access in Vehicular Environments (WAVE). The simulation results showed that the proposed algorithm reduces the effect of the attack Significantly since it increases the throughput and packet delivery ratio.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية خوارزمية جديدة للحماية من هجوم حجب الخدمة الموزع (DDoS) في شبكات العربات المتنقلة (VANET). تُعرف هذه الخوارزمية باسم القائمة السوداء الديناميكية (DBL)، وتهدف إلى كشف العربات الخبيثة التي تنفذ الهجوم ووضع معرفها في قائمة سوداء لمنع استقبال الرسائل منها في المستقبل. تعتمد الخوارزمية على حساب عدد الرسائل المستقبلة من كل عربة خلال فترة زمنية محددة، وعند تجاوز هذا العدد قيمة معينة، تُعتبر العربة مهاجمة وتُضاف إلى القائمة السوداء. تم اختبار أداء الخوارزمية باستخدام محاكي NS2.35، وتمت مقارنة نتائجها مع خوارزمية QLA. أظهرت النتائج أن الخوارزمية المقترحة تزيد من الإنتاجية ومعدل الرزم المستلمة وتقلل من التأخير نهاية إلى نهاية مقارنة بخوارزمية QLA، مما يجعلها فعالة في تقليل تأثير هجوم DDoS على الشبكة.
Critical review
دراسة نقدية: تقدم الورقة البحثية حلاً مبتكراً لمشكلة هجوم حجب الخدمة الموزع في شبكات العربات المتنقلة، ولكن هناك بعض النقاط التي يمكن تحسينها. أولاً، تعتمد الخوارزمية بشكل كبير على تحديد العتبة الزمنية وعدد الرسائل، وهو ما قد يختلف باختلاف كثافة الشبكة وسرعة العربات، مما قد يتطلب تعديلات مستمرة. ثانياً، لم يتم اختبار الخوارزمية في بيئات متنوعة أو مع بروتوكولات توجيه مختلفة، مما قد يؤثر على نتائج الأداء. ثالثاً، قد يكون هناك حاجة لمزيد من الدراسات حول تأثير الخوارزمية على استهلاك الطاقة في العربات، خاصة في البيئات ذات الكثافة العالية. بشكل عام، تعتبر الدراسة خطوة مهمة نحو تحسين أمان شبكات VANET، ولكن هناك حاجة لمزيد من البحث والتجارب لتأكيد فعالية الخوارزمية في مختلف السيناريوهات.
Questions related to the research
  1. ما هي الخوارزمية المقترحة في الورقة البحثية؟

    الخوارزمية المقترحة هي القائمة السوداء الديناميكية (DBL)، التي تهدف إلى كشف العربات الخبيثة التي تنفذ هجوم حجب الخدمة الموزع ووضع معرفها في قائمة سوداء لمنع استقبال الرسائل منها في المستقبل.

  2. كيف تم اختبار أداء الخوارزمية المقترحة؟

    تم اختبار أداء الخوارزمية باستخدام محاكي NS2.35، وتمت مقارنة نتائجها مع خوارزمية QLA بناءً على بارامترات الإنتاجية، معدل وصول الرزم، والتأخير نهاية إلى نهاية.

  3. ما هي النتائج التي أظهرتها المحاكاة؟

    أظهرت نتائج المحاكاة أن الخوارزمية المقترحة تزيد من الإنتاجية ومعدل الرزم المستلمة وتقلل من التأخير نهاية إلى نهاية مقارنة بخوارزمية QLA، مما يجعلها فعالة في تقليل تأثير هجوم DDoS على الشبكة.

  4. ما هي النقاط التي يمكن تحسينها في الدراسة؟

    يمكن تحسين الدراسة من خلال اختبار الخوارزمية في بيئات متنوعة ومع بروتوكولات توجيه مختلفة، ودراسة تأثير الخوارزمية على استهلاك الطاقة في العربات، خاصة في البيئات ذات الكثافة العالية.


References used
GHANDOUR, A. FELICE, M. BONONI,L and ARTAIL, H. “Modeling and simulation of WAVE 1609.4-based multi-channel vehicular ad hoc networks”. In Proceedings of the 5th International ICST Conference on Simulation Tools and Techniques, Desenzano del Garda, Italy, March 2012, 148-156
EICHLER, S. “Performance Evaluation of the IEEE 802.11p WAVE Communication Standard”. Vehicular Technology Conference,30 Sept.-3 Oct. 2007
QIAN, Y. LU, K and MOAYERI, N, “A SECURE VANET MAC PROTOCOL FOR DSRC APPLICATIONS”, Global Telecommunications Conference,30 Nov.-4 Dec. 2008
rate research

Read More

Distributed Denial of Service attack (DDOS) on Vehicular Ad Hoc Networks (VANETs) is considered to be one of the most serious types of attacks that can be targeted to those networks. The danger of this attack is in the difficulty of detection becau se of the cooperation of several attacking nodes in the network, and its impact on the availability requirement that is one of the most important security requirements in a network offering real-time applications .In our research, we study the effect of this attack on VANET network in the city, taking into consideration two cases. In the first case the target of the attack is the nodes, while in the second one, the target is the road side units (RSU). Simulation results have shown that this attack has a significant impact on both cases, by comparing the basic parameters of the network, such as throughput in/out and the number of dropped packets, before and after the attack.
Mobile Ad-Hoc Networks are used for data transfer. The nodes of such networks do not require presetting. They are characterized by dynamic data transfer during their movement of the nodes. MANET could be targeted by potential security breaches. Bl ack hole attack is one of the serious attacks targeting wireless AD_HOC networks through a false point whichcan absorb data and send them to another place or neglect them. This is due to the lack of central control node which is able to manage communications. This research investigates the effects of the black hole on the performance of hybrid routing protocol Temporally Ordered Routing Algorithm (TORA) and proactive routing protocol Optimized Link State Routing (OLSR) for a variable number of mobile nodes in different speeds in a high load environment.
In this search, we provide a study about the security in VANET networks which are considered to be a part of mobile wireless networks and designed to work between moving vehicles. The most important security flaws of this networks and its applica tions are studied. In fact, we study the most important and dangerous attacks that may target VANET networks and analyze its main risks. Furthermore, we simulate some of these attacks Specifically Denial-of Service (DOS) attack using prober tools depending on chosen parameters that characterize the network performance. moreover, we provide some Security solutions to help counter measuring these attacks and minimize this effects, and Finally we apply these solutions and evaluate them.
Recent literatures have shown that knowledge graph (KG) learning models are highly vulnerable to adversarial attacks. However, there is still a paucity of vulnerability analyses of cross-lingual entity alignment under adversarial attacks. This paper proposes an adversarial attack model with two novel attack techniques to perturb the KG structure and degrade the quality of deep cross-lingual entity alignment. First, an entity density maximization method is employed to hide the attacked entities in dense regions in two KGs, such that the derived perturbations are unnoticeable. Second, an attack signal amplification method is developed to reduce the gradient vanishing issues in the process of adversarial attacks for further improving the attack effectiveness.
The project aims primarily to employ the benefits of artificial intelligence, specifically the characteristics of programming a neuronal network where neuronal networks, in turn, are networks that are interested in trainin g and learning from error, and employing this error to achieve optimal results.Convolution NeuralNetworks(CNN)in particular are one of the most important neuronal networks that address classification problems and issues. Thus, this project is to design a convolution neuronal network that classifies vehicles into several types where we will design the network and train them on the database as the database includes pictures of several types of vehicles The network will classify each Image to its type, after adjusting the images, making the appropriate changes, turning them gray, and discovering the edges and lines.After the images are ready, the training process will begin, and after the training process is finished, we will produce classification results, and then we will test with a new set of images.One of the most important applications of this project is to abide by the paving places of cars, trucks, and vehicles in general, as if a picture was entered as a car for the car sample, which is a truck, for example, this will give an error where the network will discover this by examining and classifying it. As a truck, we discover that there is a violation of the paving laws

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا