Do you want to publish a course? Click here

Increasing the immunity of AES against the algebraic attacks by using the dynamic key dependent S-Boxes and studying its effect on AES immunity against the classic attacks

رفع مناعة AES ضد الهجمات الجبرية باستخدام جداول التبديل المعتمدة على المفتاح و دراسة تأثير هذه الجداول في مناعة AES ضد الهجمات التقليدية

922   0   11   0 ( 0 )
 Publication date 2007
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The security of several recently proposed ciphers relies on the fact:" that the classical methods of cryptanalysis (e.g. linear or differential attacks) are based on probabilistic characteristics, which makes their security grow exponentially with the number of rounds". So they haven’t the suitable immunity against the algebraic attacks which becomes more powerful after XSL algorithm. in this research we will try some method to increase the immunity of AES algorithm against the algebraic attacks then we will study the effect of this adjustment.


Artificial intelligence review:
Research summary
تستعرض هذه الورقة البحثية كيفية تعزيز مناعة خوارزمية التشفير AES ضد الهجمات الجبرية باستخدام جداول تبديل ديناميكية تعتمد على المفتاح. تعتمد خوارزمية AES على جداول تبديل ثابتة، مما يجعلها عرضة للهجمات الجبرية بعد تطوير خوارزمية XSL. تقدم الورقة طريقة لتعديل جداول التبديل في AES لتصبح ديناميكية، مما يزيد من تعقيد الهجمات الجبرية. كما تدرس تأثير هذا التعديل على مناعة AES ضد الهجمات التقليدية مثل التحليل الخطي والتحليل التفاضلي. تم إجراء اختبارات إحصائية لتقييم فعالية التعديل المقترح، وأظهرت النتائج أن التعديل يزيد من مناعة AES ضد الهجمات الجبرية دون التأثير سلبًا على مناعتها ضد الهجمات التقليدية.
Critical review
دراسة نقدية: تقدم هذه الورقة البحثية مساهمة قيمة في مجال تعزيز أمان خوارزمية AES ضد الهجمات الجبرية. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم تقديم تحليل شامل لتأثير التعديل على الأداء العملي للخوارزمية من حيث السرعة والكفاءة. ثانيًا، لم يتم تقديم مقارنة واضحة بين جداول التبديل الديناميكية والعشوائية من حيث الفعالية والأمان. أخيرًا، يمكن تعزيز الورقة بإضافة دراسات حالة عملية لتوضيح كيفية تطبيق التعديلات المقترحة في بيئات حقيقية.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو تعزيز مناعة خوارزمية AES ضد الهجمات الجبرية باستخدام جداول تبديل ديناميكية تعتمد على المفتاح ودراسة تأثير هذا التعديل على مناعة AES ضد الهجمات التقليدية.

  2. ما هي الهجمات الجبرية وكيف تؤثر على AES؟

    الهجمات الجبرية هي نوع من الهجمات التي تعتمد على حل جملة المعادلات التي تصف نظام التشفير في حقل منته. تؤثر هذه الهجمات على AES بجعلها عرضة للكسر بعد تطوير خوارزمية XSL التي تمكنت من حل جملة المعادلات الجبرية الخاصة بـ AES.

  3. ما هي الاختبارات الإحصائية التي تم استخدامها لتقييم فعالية التعديل المقترح؟

    تم استخدام مجموعة من الاختبارات الإحصائية التي اقترحها المعهد الوطني للمعايير والتقنية NIST لتقييم مدى عشوائية مخرجات الخوارزمية بعد التعديل، مثل اختبار Frequency (Monobit)، واختبار Runs، واختبار Binary Matrix Rank، وغيرها.

  4. ما هي النتائج الرئيسية التي توصل إليها البحث؟

    النتائج الرئيسية التي توصل إليها البحث هي أن التعديل المقترح باستخدام جداول التبديل الديناميكية يزيد من مناعة AES ضد الهجمات الجبرية دون التأثير سلبًا على مناعتها ضد الهجمات التقليدية.


References used
Daemen, J., and Rijmen, V. (2001). "The Design of rijndael AES – The advanced encryption standard", Springer
"Announcing the advanced encryption standard (AES)",Federal Information Processing Standards Publication 197, 2001 URL:http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., and Dray, J. (2001)."A statiistiical test suiite for random and pseudorandom number generators for cryptographiic appliicatiions", URL:http://www.csrc.nist.gov/publications/nistpubs/800-22/sp-800-22-051501.pdf
rate research

Read More

Deep neural networks are vulnerable to adversarial attacks, where a small perturbation to an input alters the model prediction. In many cases, malicious inputs intentionally crafted for one model can fool another model. In this paper, we present the first study to systematically investigate the transferability of adversarial examples for text classification models and explore how various factors, including network architecture, tokenization scheme, word embedding, and model capacity, affect the transferability of adversarial examples. Based on these studies, we propose a genetic algorithm to find an ensemble of models that can be used to induce adversarial examples to fool almost all existing models. Such adversarial examples reflect the defects of the learning process and the data bias in the training set. Finally, we derive word replacement rules that can be used for model diagnostics from these adversarial examples.
Deep learning is at the heart of the current rise of artificial intelligence. In the field of Computer Vision, it has become the workhorse for applications ranging from self-driving cars to surveillance and security. Whereas deep neural networks have demonstrated phenomenal success (often beyond human capabilities) in solving complex problems, recent studies show that they are vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrect outputs. For images, such perturbations are often too small to be perceptible, yet they completely fool the deep learning models. Adversarial attacks pose a serious threat to the success of deep learning in practice. This fact has recently lead to a large influx of contributions in this direction. This article presents a survey on adversarial attacks on deep learning in Computer Vision. We review the works that design adversarial attacks, analyze the existence of such attacks and propose defenses against them
We propose the first general-purpose gradient-based adversarial attack against transformer models. Instead of searching for a single adversarial example, we search for a distribution of adversarial examples parameterized by a continuous-valued matrix , hence enabling gradient-based optimization. We empirically demonstrate that our white-box attack attains state-of-the-art attack performance on a variety of natural language tasks, outperforming prior work in terms of adversarial success rate with matching imperceptibility as per automated and human evaluation. Furthermore, we show that a powerful black-box transfer attack, enabled by sampling from the adversarial distribution, matches or exceeds existing methods, while only requiring hard-label outputs.
We testified in the last years immense jumps and many developments in all of the life domains, specially in a field of the informatics and telecommunications. Therefor the digital information and the telecommunications and its kinds, became the ner ve of daily life, and the basic support which are built on it most of the sciences. Internet and networks applications are growing very fast, so the needs to protect such applications are increased. Encryption algorithms play a main role in information security systems. On the other side, those algorithms consume a significant amount of computing resources such as CPU time, memory, and battery power. A comparison has been conducted for those encryption algorithms at different settings for each algorithm such as different sizes of data blocks, different data types, battery power consumption, different key size and finally encryption/decryption speed. Simulation results are given to demonstrate the effectiveness of each algorithm. The two main characteristics that identify and differentiate one encryption algorithm from another are its ability to secure the protected data against attacks and its speed and efficiency in doing so. Network algorithms were from most of the topics importance, which it was very important most savants and the researchers, because a need of algorithm, a necessary matter for performance most of the processes, until the very small processes. specially Cryptography Algorithms. Therefor many of researches and studies has been consecrated for invention a new algorithms, which are suited with requirements of this age , as the speed and volume of data, and Information security and development of this subject. Cryptography has a long and fascinating history. The predominant practitioners of the art were those associated with the military, the diplomatic service and government in general. Cryptography was used as a tool to protect national secrets and strategies. Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity authentication, and data origin authentication. The development subject of Cryptography Algorithms (CAs) is considered of the most important topics in the last years, because of the large and fast development in the communications, computers and networks, and the need for information security and data protection methods ( Cryptography methods) Here we need some mathematical background, which assumes only that the reader knows the basic concept of integers (mod n). The F in GF(Q) stands for Field. Examples of fields are complex numbers and integers mod p (p prime). A field has a set of objects which can be combined by either of two operations (addition and multiplication) to produce other objects in the set. There is an additive identity (‘zero’), there is a multiplicative identity i.e. ‘one’. There is an additive inverse (minus the number), and there is a multiplicative inverse for all numbers except the additive identity i.e. except for ‘zero’. Classical ciphers refers to encryption techniques which have become well-known over time, and generally created prior to the second half of the twentieth century (in some cases, many hundreds of years earlier). Many classical techniques are variations of simple substitution and simple transposition. Block ciphers can be either symmetric-key or public-key
Wireless sensor network have become widely used in many civil and military issues. Like all other network, it is exposed to attacks but its simplicity structured (CPU & memory) prevent the traditional defense technic to be applied, so they need a s pecial for defense. Most security researches focus on data righteousness and privacy, in this research we focus on attacks that aimed to the power resources which are referred as Denial Of Sleep attacks (DoS), in this attacks the attacker try to keep the sensor in active phase causing the power source to be drained very quickly so that it is a very dangerous attack. In this research we reviewed the sources of energy Loss in wireless sensor network and classified the attacks that target the power resource, we built a simulation module to analysis the B-MAC protocol response to denial of sleep attacks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا