Do you want to publish a course? Click here

Traffic Density Prediction state of the art

لمحة عن بعض الطرق المدروسة للتنبؤ بالكثافة المرورية

1014   0   21   0 ( 0 )
 Publication date 2018
and research's language is العربية
 Created by wedad zein




Ask ChatGPT about the research

No English abstract


Artificial intelligence review:
Research summary
تناقش هذه الدراسة مشكلة التنبؤ بكثافة المرور باستخدام تقنيات مختلفة من الذكاء الاصطناعي. تتضمن الدراسة عدة طرق منها استكشاف المعرفة باستخدام البرمجة الجينية للشبكات (GNP)، التنبؤ باستخدام نظرية بايز والشبكات العصبية من نوع RBF، والتنبؤ باستخدام المرمزات الآلية المتكدسة (SAE). كما تتناول الدراسة تحسين نموذج دعم المتجهات (SVM) باستخدام خوارزمية تحسين أسراب الجسيمات (PSO). تهدف هذه الطرق إلى تحسين دقة التنبؤ بكثافة المرور وتقليل الازدحام المروري. تقدم الدراسة تحليلًا مفصلًا لكل طريقة، بما في ذلك الخطوات الرياضية والمعادلات المستخدمة، وتقييم أداء كل طريقة بناءً على معايير مختلفة مثل متوسط الخطأ المطلق (MAE)، متوسط الخطأ النسبي المطلق (MARE)، وجذر متوسط الخطأ المربع (RMSE).
Critical review
تقدم الدراسة تحليلًا شاملًا لمشكلة التنبؤ بكثافة المرور باستخدام تقنيات الذكاء الاصطناعي المختلفة. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، الدراسة تعتمد بشكل كبير على المعادلات الرياضية والتفاصيل التقنية، مما قد يجعلها صعبة الفهم للقراء غير المتخصصين. ثانياً، لم يتم تقديم تحليل مقارن شامل بين الطرق المختلفة لتوضيح أي منها هو الأكثر فعالية في سيناريوهات مختلفة. وأخيرًا، الدراسة تفتقر إلى تطبيقات عملية أو تجارب ميدانية لتأكيد فعالية الطرق المقترحة في بيئات حقيقية.
Questions related to the research
  1. ما هي الطرق المختلفة التي تم استخدامها في الدراسة للتنبؤ بكثافة المرور؟

    تم استخدام عدة طرق منها استكشاف المعرفة باستخدام البرمجة الجينية للشبكات (GNP)، التنبؤ باستخدام نظرية بايز والشبكات العصبية من نوع RBF، والتنبؤ باستخدام المرمزات الآلية المتكدسة (SAE)، وتحسين نموذج دعم المتجهات (SVM) باستخدام خوارزمية تحسين أسراب الجسيمات (PSO).

  2. ما هي المعايير المستخدمة لتقييم أداء طرق التنبؤ المختلفة؟

    تم استخدام عدة معايير لتقييم الأداء منها متوسط الخطأ المطلق (MAE)، متوسط الخطأ النسبي المطلق (MARE)، وجذر متوسط الخطأ المربع (RMSE).

  3. ما هي التحديات التي تواجه مشكلة نمذجة حالة المرور؟

    التحديات تشمل الخصائص المعقدة للعمليات المرورية العشوائية، وتنوع معلومات التسلسل الزمني للكثافة المرورية، والسرعات، والتمركز المروري التي يتم جمعها من مواقع مختلفة.

  4. كيف يتم تحسين نموذج دعم المتجهات (SVM) باستخدام خوارزمية تحسين أسراب الجسيمات (PSO)؟

    يتم تحسين نموذج دعم المتجهات (SVM) باستخدام خوارزمية تحسين أسراب الجسيمات (PSO) من خلال تهيئة معاملات PSO، تدريب نموذج SVM، حساب سرعة وموقع كل جزئية، وتكرار العملية حتى تحقيق أفضل نموذج SVM.


References used
Huiyu Zhou. and Kotaro Hirasawa. 2014 - Traffic Density Prediction with Time-Related Data Mining using Genetic Network Programming. The British Computer Society. Vol. 57 No. 9, Feb.
Yongfu Li · Xiao Jiang · Hao Zhu., Xiaozheng He · Srinivas Peeta·, Taixiong Zheng · Yinguo Li. 2016 - Multiple measures-based chaotic time series for traffic flow prediction based on Bayesian theory. Nonlinear Dyn. DOI 10.1007/s11071-016-2677-5.
Stathopoulos, A., Karlaftis, M.G. 2003 - Amultivariate state-space approach for urban traffic flow modeling and prediction. Transp. Res. Part C 11(2), 121–135
Kim, H.S., Eykholtb, R., Salasc, J.D. 1999 - delay times and embedding windows. Nonlinear dynamics, Phys. D 127, 48–60.
Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. 2014 - Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE, 1524-9050.
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. 2007 - Greedy layerwise training of deep networks, Proc. Adv. NIPS, pp. 153–160.
G. E. Hinton, S. Osindero, and Y.-W. The. Jul. 2006- A fast learning algorithm for deep belief nets, Neural Comput., vol. 18, no. 7, pp. 1527–1554
Huaizhong Gu, Jian Lu, and Qingchao Liu. 2016 - Traffic Volume Prediction Based on Cost Factor Optimization of Support Vector Machine Regression. University of Western Ontario.
rate research

Read More

لتوصيل المعلومات بوضوح وكفاءة ، يستخدم تمثيل البيانات رسومات إحصائية ومعلومات وأدوات أخرى. قد يتم تشفير البيانات الرقمية باستخدام نقاط أو خطوط أو أشرطة لتوصيل المعلومات بصريًا. التمثيل الفعال يساعد المستخدمين على تحليل البيانات وتفسيرها، فهو يجعل الب يانات المعقدة سهلة الوصول ومفهومة وقابلة للاستخدام. تُستخدم الجداول عمومًا حيث يبحث المستخدمون عن قياس محدد ، بينما تُستخدم المخططات ذات الأنواع المختلفة لإظهار أنماط أو علاقات في البيانات لمتغير واحد أو أكثر.
Traffic Conflict Technique TCT has a long history in traffic safety researches. Traffic accidents are now well known to generate a serious problem that exhausts enormous resources of the national economy either directly or indirectly. Because signa lized intersections are potential black spot locations that may cause too many accident this research uses the traffic conflict techniques for analyzing accidents at signalized intersections. In this research, TCT was used at four-leg signalized intersections in Damascus to evaluate safety at these intersections. The relationship between conflicts and accidents was estimated and the results indicated that the conflicts and the accidents are related to each other by a linear regression. Results also showed that the correlation was unclear between conflicts and entry volumes at the intersections. Additionally, priority ranking of these intersections was developed based on risk index that depends on injury level.
When learned without exploration, local models for structured prediction tasks are subject to exposure bias and cannot be trained without detailed guidance. Active Imitation Learning (AIL), also known in NLP as Dynamic Oracle Learning, is a general t echnique for working around these issues by allowing the exploration of different outputs at training time. AIL requires oracle feedback: an oracle is any algorithm which can, given a partial candidate solution and gold annotation, find the correct (minimum loss) next output to produce. This paper describes a general finite state technique for deriving oracles. The technique describe is also efficient and will greatly expand the tasks for which AIL can be used.
While Yu and Poesio (2020) have recently demonstrated the superiority of their neural multi-task learning (MTL) model to rule-based approaches for bridging anaphora resolution, there is little understanding of (1) how it is better than the rule-based approaches (e.g., are the two approaches making similar or complementary mistakes?) and (2) what should be improved. To shed light on these issues, we (1) propose a hybrid rule-based and MTL approach that would enable a better understanding of their comparative strengths and weaknesses; and (2) perform a manual analysis of the errors made by the MTL model.
This paper focuses on paraphrase generation,which is a widely studied natural language generation task in NLP. With the development of neural models, paraphrase generation research has exhibited a gradual shift to neural methods in the recent years. This has provided architectures for contextualized representation of an input text and generating fluent, diverseand human-like paraphrases. This paper surveys various approaches to paraphrase generation with a main focus on neural methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا