Do you want to publish a course? Click here

Big Data Visualization State Of The Art

تمثيل الداتا

1331   0   25   0.0 ( 0 )
 Publication date 2019
and research's language is العربية
 Created by soria musa




Ask ChatGPT about the research

No English abstract


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية موضوع تمثيل البيانات الضخمة وأهميته في تحليل البيانات وتفسيرها. يبدأ المؤلفون بتعريف البيانات الضخمة والتحديات المرتبطة بها مثل الحجم والتنوع والسرعة. ثم يستعرضون فوائد تمثيل البيانات وكيف يمكن أن يساعد في تبسيط البيانات المعقدة وجعلها مفهومة وقابلة للاستخدام. يتم التطرق إلى بعض الأدوات المستخدمة في تمثيل البيانات مثل Google Charts وTableau وD3.js وHighcharts، مع شرح موجز لكل أداة وميزاتها. كما يتم استعراض بعض تقنيات تمثيل البيانات مثل الأشكال الهندسية، الأيقونات، السحب التاجية، والمخططات الحركية. تُختتم الورقة بتقديم نظرة عامة على التحديات والفوائد المرتبطة بتمثيل البيانات الضخمة وأهمية استخدام الأدوات والتقنيات المناسبة لتحقيق أفضل النتائج.
Critical review
دراسة نقدية: تعتبر هذه الورقة البحثية شاملة ومفيدة في تقديم نظرة عامة على تمثيل البيانات الضخمة وأدواتها وتقنياتها. ومع ذلك، يمكن تحسينها من خلال تقديم أمثلة عملية وتطبيقات واقعية لاستخدام هذه الأدوات والتقنيات في مجالات مختلفة. كما يمكن تعزيز الورقة بإضافة دراسات حالة توضح كيف يمكن لتمثيل البيانات أن يساعد في حل مشكلات حقيقية. بالإضافة إلى ذلك، يمكن توضيح بعض المصطلحات التقنية بشكل أكبر لتكون مفهومة للقارئ غير المتخصص.
Questions related to the research
  1. ما هي التحديات الرئيسية المرتبطة بالبيانات الضخمة؟

    التحديات الرئيسية تشمل الحجم، التنوع، السرعة، التنظيم، والصدق.

  2. ما هي الأدوات المستخدمة في تمثيل البيانات الضخمة التي تم ذكرها في الورقة؟

    الأدوات المذكورة تشمل Google Charts، Tableau، D3.js، وHighcharts.

  3. ما هي فوائد تمثيل البيانات الضخمة؟

    فوائد تمثيل البيانات الضخمة تشمل تبسيط البيانات المعقدة، تسهيل فهم العلاقات بين العمليات والنتائج، واكتشاف الاتجاهات الناشئة.

  4. ما هي بعض تقنيات تمثيل البيانات التي تم استعراضها في الورقة؟

    بعض التقنيات تشمل الأشكال الهندسية، الأيقونات، السحب التاجية، والمخططات الحركية.


References used
No references
rate research

Read More

ازدادت الحاجة لأنظمة التنبؤ المرورية وأصبحت حاجة ضرورية وملحة في أنظمة إدارة المرور المتقدمة، ذلك لأن توقع كثافة المرور يقلل الازدحام المروري ويسهل حركة السير. ومع وجود تنبؤ دقيق بحالة المرور سيكون بمقدورنا تطوير نظام إدارة مرورية متطور ونظام استعلام ات متطور للمسافرين. التحدي الذي يواجه مشكلة نمذجة حالة المرور هو الخصائص المعقدة للعمليات المرورية العشوائية. معلومات التسلسل الزمني للكثافة المرورية، والسرعات، والتمركز المروري والتي يتم جمعها من مواقع مختلفة تمتلك خصائص مختلفة عن بعضها، وبذلك عملية التنبؤ بالكثافة المرورية المستقبلية ليست عملية بديهية، ويناقش هذا البحث عدة طرق قامت بتقديم حلول لهذه المشكلة.
While Yu and Poesio (2020) have recently demonstrated the superiority of their neural multi-task learning (MTL) model to rule-based approaches for bridging anaphora resolution, there is little understanding of (1) how it is better than the rule-based approaches (e.g., are the two approaches making similar or complementary mistakes?) and (2) what should be improved. To shed light on these issues, we (1) propose a hybrid rule-based and MTL approach that would enable a better understanding of their comparative strengths and weaknesses; and (2) perform a manual analysis of the errors made by the MTL model.
This paper focuses on paraphrase generation,which is a widely studied natural language generation task in NLP. With the development of neural models, paraphrase generation research has exhibited a gradual shift to neural methods in the recent years. This has provided architectures for contextualized representation of an input text and generating fluent, diverseand human-like paraphrases. This paper surveys various approaches to paraphrase generation with a main focus on neural methods.
In recent years, time-critical processing or real-time processing and analytics of bid data have received a significant amount of attentions. There are many areas/domains where real-time processing of data and making timely decision can save thousand s of human lives, minimizing the risks of human lives and resources, enhance the quality of human lives, enhance the chance of profitability, efficient resources management etc. This paper has presented such type of real-time big data analytic applications and a classification of those applications. In addition, it presents the time requirements of each type of these applications along with its significant benefits. Also, a general overview of big data to describe a background knowledge on this scope.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا