يقدم هذا البحث طريقة معينة لتحديد مجموعات تحول قيم بعض الداليات الخطية في فضاء كاراتيودوري المعمم و هو فضاء التوابع التحليلية في قرص الواحدة التي تقبل التمثيل التكاملي الآتي:
حيث دالة غير متناقصة ضمن المجال و تحقق الشرط . و قد تم ، في هذا الفضاء، البرهان على أن مجموعة قيم الدالي:
عندما تكون كثيرة حدود في القرص ، هي قرص مغلق تم تحديد مركزه و نصف قطره . و قد تم أيضاً تحديد مستقرات بعض الداليات الأخرى في هذا الفضاء.
This paper presents a certain method to determine the range of variability of some functionals defined in Generalized Caratheodory Class ( i.e the class of analytic functions in the unit disk of the form:
where is a non decreasing function on the interval such that ). It has been proved that the range of variability of functional
where is a polynomial in , is the closed disc with and precisely determined . Also the range of variability of some other functional determined
Artificial intelligence review:
Research summary
يتناول هذا البحث تحديد مجموعات تحول قيم بعض الداليات الخطية في فضاء كاراتيودوري المعمم. يتم تعريف فضاء كاراتيودوري المعمم على أنه فضاء التوابع التحليلية في قرص الوحدة التي تقبل تمثيلاً تكاملياً معيناً. يبرهن البحث على أن مجموعة قيم الدالية F(f) = A(zo)f(zo) حيث A(z) هي كثيرة حدود في قرص الوحدة، تتطابق مع قرص مغلق مركزه ونصف قطره محددان بدقة. كما يتم تحديد مستقرات بعض الداليات الأخرى في هذا الفضاء. البحث يعتمد على نظريات أساسية في تحليل الداليات ويستخدم خواص تكامل ريمان-ستلجس للحصول على النتائج. يهدف البحث إلى متابعة دراسات سابقة في المسائل القصوى المتعلقة بالداليات العقدية وتقديم حلول جديدة لمسائل مطروحة سابقاً.
Critical review
دراسة نقدية: يقدم البحث إضافة قيمة في مجال تحليل الداليات من خلال تحديد مجموعات تحول قيم بعض الداليات في فضاء كاراتيودوري المعمم. ومع ذلك، يمكن أن تكون الدراسة أكثر شمولاً إذا تم تضمين تطبيقات عملية أو أمثلة واقعية لتوضيح النتائج بشكل أفضل. كما أن البحث يفتقر إلى مناقشة مفصلة حول القيود المحتملة للنظريات المستخدمة وكيف يمكن تجاوزها في الدراسات المستقبلية. على الرغم من أن النتائج النظرية قوية، إلا أن تقديم أمثلة تطبيقية يمكن أن يعزز من فهم القارئ ويجعل البحث أكثر فائدة.
Questions related to the research
-
ما هو فضاء كاراتيودوري المعمم؟
فضاء كاراتيودوري المعمم هو فضاء التوابع التحليلية في قرص الوحدة التي تقبل تمثيلاً تكاملياً معيناً.
-
ما هي الدالية التي تم دراستها في البحث؟
الدالية التي تم دراستها هي F(f) = A(zo)f(zo) حيث A(z) هي كثيرة حدود في قرص الوحدة.
-
ما هي النتائج الرئيسية التي توصل إليها البحث؟
النتائج الرئيسية هي أن مجموعة قيم الدالية F(f) تتطابق مع قرص مغلق مركزه ونصف قطره محددان بدقة، وتم تحديد مستقرات بعض الداليات الأخرى في الفضاء.
-
ما هي أهمية البحث وأهدافه؟
أهمية البحث تكمن في متابعة دراسات سابقة في المسائل القصوى المتعلقة بالداليات العقدية وتقديم حلول جديدة لمسائل مطروحة سابقاً، بالإضافة إلى تقديم حلول لمسائل جديدة متعلقة بتحديد مستقرات بعض الداليات.
References used
ALEKSANDROV,I. Boundary Values of Functional on the Class of Holomorphic Functions Univalent in a Circle. Sibirsk, Mat. Z. 4 , (1963),17-31
BABALOLA. T, K. O. OPOOL, O. Iterated integral Transforms of Caratheodory Functions and their Applications to Analytic and Univalent Functions. Tamking Journal of Mathemtics Volume 37, Number 4, 355-366, Winter 2006
BADDOUR,H. About the range of variability of linear functionals in Caratheodory Classe. Damascus univ.journal- No.28 – 1998
This paper presents a certain method to determine the range of varibility
of linear functionals defined in the Caratheodory Class i.e the class of
analytic functions in the unit disk ( z < 1 ) with a positive real part and
f(0)=1.
This paper presents a certain method to determine the range of variability ( or the set of values) of some functionals defined in the Class (i.e the class of analytic functions in the unit disk
It have been shown in this class that the range of variability of the functional is the closed disk
The estimations of modulus of function and some other estimations related were also obtaind
In this research, we have studied the issue of approximation of complex functions from weighted Lebesgue space ; and (Mukenhoupt weight) to rational functions by using p- Faber polynomials on large group of curves, which called Carlson curves. This
We study in this research approximation of complex functions from Orlicz space on a subclass of Carlson curves, which called Dini smooth curves to rational functions by using polynomials related with Dzjadyk sums which obtained from Faber polynomials. We depend on some concepts of complex analysis such as formulas of Sokhotski to reach the desired goal
Prior research has explored the ability of computational models to predict a word semantic fit with a given predicate. While much work has been devoted to modeling the typicality relation between verbs and arguments in isolation, in this paper we tak