Do you want to publish a course? Click here

Analyzing of Convection Heat Transfer in Absorber Tube of Direct Steam Generation Parabolic Trough Collector (DSG-PTC)

تحليل الإنتقال الحراري بالحمل في الأنبوب الماص لمركز شمسي قطعي يستخدم لتوليد البخار بشكل مباشر

1460   2   74   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Direct steam generation in parabolic trough collector (DSGPTC) has had a great importance because of its thermoeconomic advantages and many researches have be done in this field. Due to that reason this paper studies the convection heat transfer from absorber tube of a PTC to all phases of water (liquid water, wet steam and dry steam) along the whole distance of fixed length of a DSG-PTC generates a high temperature superheated steam (561 °C). All heat transfer operations in PTC has been modelled and then the convection' components which are; fluid temperature, tube wall-fluid temperatures difference and heat transfer coefficient have been analyzed in details at different operation conditions such as inlet fluid pressure, direct solar beam and mass flow.

References used
Price H. Lu¨pfert E. Kearney D. Zarza E. Cohen G., Gee R., Mahoney R. 2002 Advances in Parabolic Trough Solar Power Technology Journal of Solar Energy Engineering, Vol. 124 / 109-125
Dudley VE, Kolb GJ, Sloan M, Kearney D. Test results: SEGS LS-2 solar collector, Report SAND94-1884, Sandia National Laboratories, Albuquerque, NM; 1994
Kreith F. Goswami D.Y. 2007 - Handbook of Energy Efficiency and Renewable Energy. CRC press, 1st Ed, New York, 1586
rate research

Read More

The process of direct steam generation was studied in this work within a parabolic trough solar collector in order to generate electricity. The study was based on the equations of a two phase flow to study heat transfer in the collector's tube. Th e study showed a possibility to reach an effective model to study the performance of this type of solar collectors which will aid in the understanding of the working principle of power plants and to research further towards new control strategies of solar power plants or towards the hybridization with other types of power plants.
The drastically increase in energy demand and the problems resulted from environmental pollution have led to a serious trend towards energy utilization efficiency improvement through scientific researches related to renewable energies, particularit y that Syria has a high solar irradiance and prolonged sunshine hours. This research focuses on determining the thermal efficiency for a prototype of a parabolic trough solar concentrator (PTC) to obtain the optimal prototype thermally and economically according to climatic conditions in Damascus. It has been deposited the mathematical model of the studied concentrator depending on the calculated design parameters through calculating the solar angles equations and direct solar irradiance throughout the year. And it has been solved this model by using numerous computer programs (Excel, EES).
In this research a study effect of absorbed surface shape for solar air collector (Flat V-Corrugated ,Sinusoidal Wave-Corrugated ,Rectangular-Corrugated) titled to the horizontal by an angle(30) on forced heat transfer and skin friction coefficient by Fluent Numerical Program at constant solar heat flax (530W/m2) with Reynold’s number (5000≤Re≤8000). The government equation (mass, momentum and energy) are using Finite Volume by (Fluent 6.3) software for considering steady state, two dimensional and turbulent flow. The results show that the different between inlet and outlet air temperature is(13.65oC) and best heat transfer coefficient enhancement is(63%) for (V-Corrugated plate) compared with the flat plate at (Re=8000). Also the results show that the maximum skin friction coefficient is occurred at (V-Corrugated) Cf=0.22 at (Re=8000).
In some applications we try to avoid the transfer of heat by convection, especially through monomur bricks. The solution of this problem consist in division the cavity by putting number of columns between the two external surfaces. We've studied he at transfer in different profiles of monomur brick. The results of the numeric simulations are studied by following the two approaches (local and whole). The local approach consists of studying the heat transfer during every cavity. While the whole approach consists of study the heat transfer in whole cavity. The numeric simulation was achieved by following the finished volumes and Fluent program that solves the equations of the mass' conservation, movement and energy. It's clear that the position of columns allows passing from convective regime into conductive regime inside the cavity. The optimal solution is to homogeneous partition by columns. Finally, we've a method allowing as to define the heterogeneous structure (number of columns and their thickness, thickness of a variable cavities).
In this paper the use of parabolic trough solar field to rise feed water temperature completely or partially according to brightness of sun is studied, in this way steam bleeding could be avoided variably. Results are analyzed according to Damascu s solar and climate data, efficiency is increased about 1.6 % and power raised 6 %.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا