Do you want to publish a course? Click here

Maximal Elements and Prime Elements in Lattice Modules

العناصر الأعظمية و العناصر الأولية في المقاسات الشبكية

1449   0   34   0 ( 0 )
 Publication date 2003
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we study the relationship between the maximal (prime) elements of M and the maximal (prime) elements of L. We show that, if L is a local lattice and the greatest element of M is weak principal, then M is local . Then we define the Jacobson radical of M and denote it by J(M) and we study its relationship with the Jacobson radical of L (J(L)) . Afterwards, we define the semiprime element in a lattice module M, and we show that the definitions of prime element and semiprime element are equivalent when the greatest element of M is multiplication and we study the properties equivalent to the properties of prime element in lattice module .


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية دراسة العلاقة بين العناصر القصوى (العناصر الأولية) في وحدات الشبكة L-module والعناصر القصوى (العناصر الأولية) في الشبكة L. تبدأ الورقة بتعريف بعض المفاهيم الأساسية مثل الشبكة التضاعفية والعنصر الضعيف الرئيسي والعنصر الضرب. ثم تستعرض الورقة كيفية تحديد الجذر الجاكوبسوني لوحدة الشبكة M وعلاقته بالجذر الجاكوبسوني للشبكة L. كما تقدم الورقة تعريفًا للعناصر شبه الأولية وتوضح أن تعريفات العنصر الأولي والعنصر شبه الأولي متكافئة عندما يكون العنصر الأعظم في M هو عنصر ضرب. بالإضافة إلى ذلك، تقدم الورقة تعريفًا للوحدة التكاملية وتثبت أنه إذا كانت سلسلة من العناصر الأولية في M، فإن N هي عنصر أولي في M. وأخيرًا، تستعرض الورقة العلاقة بين العناصر الأولية في وحدة الشبكة M والعناصر الأولية في الشبكة L.
Critical review
## دراسة نقدية تقدم الورقة البحثية مساهمة قيمة في فهم العلاقة بين العناصر القصوى والأولية في وحدات الشبكة والشبكات التضاعفية. ومع ذلك، يمكن أن تكون الورقة أكثر وضوحًا في بعض الأجزاء، حيث أن التعريفات والمفاهيم الرياضية المعقدة قد تكون صعبة الفهم على القراء غير المتخصصين. كان من الممكن أن تكون الورقة أكثر فائدة إذا تضمنت أمثلة أكثر توضيحًا لتطبيقات النظرية في مجالات أخرى. بالإضافة إلى ذلك، كان يمكن تحسين الورقة بإضافة قسم يوضح التطبيقات العملية للنظريات المقدمة وكيف يمكن استخدامها في حل مشاكل حقيقية في الرياضيات أو العلوم الأخرى.
Questions related to the research
  1. ما هو العنصر الأقصى في وحدة الشبكة؟

    العنصر الأقصى في وحدة الشبكة هو عنصر N ≠ IM من M بحيث إذا كان N ≤ B لأي عنصر B من M، فإن إما N = B أو B = IM.

  2. ما هو الجذر الجاكوبسوني لوحدة الشبكة؟

    الجذر الجاكوبسوني لوحدة الشبكة M، ويُرمز له بـ J(M)، هو تقاطع العناصر القصوى للوحدة M.

  3. ما هي العلاقة بين العنصر الأولي والعنصر شبه الأولي في وحدة الشبكة؟

    العنصر الأولي في وحدة الشبكة هو أيضًا عنصر شبه أولي، والعكس صحيح عندما يكون العنصر الأعظم في M هو عنصر ضرب.

  4. ما هو تعريف الوحدة التكاملية في الشبكة؟

    الوحدة التكاملية هي وحدة الشبكة M التي يكون فيها IM = 0 والعنصر الصفري 0 هو عنصر أولي.


References used
DILWORTH, R. P. 1962. Abstract commutative ideal theory, pacific J. Math ., 12 , 481 – 498
JOHNSON, J. A. 1970. a–adic completions of Noetherian lattice modules. Fund. Math., 66, 341 – 371
JOHNSON, E. W. and JOHNSON, J. A. 1970. Lattice modules over semi–local Noether lattices. Fund. Math., 68, 187–201
rate research

Read More

In ١٩٦٢ R.P.Dilworth introduced the concept of a Noether lattice as an abstraction of the concept of the lattice of ideals of a Noetherian ring. He showed that many of the important theorems of classical ideal theory held in them. The purpose of this paper is to introduce and study the concept of idempotent elements for the multiplicative lattices , since they play very idempotent role for studying the multiplicative lattices and some rings.
the research aims to know the methods of Landscape Architecture, and to choose the green elements appropriate for them, this can be achieved after knowing the climatic conditions that prevail in different regional in general and in the Syrian Arab Republic in Particular.
This research aims to study the effect of adding alloying elements and heat treatment of Zinc metal on solar energy absorbing , nine alloys ingots were manufactured by changing the percentages of added Aluminum and Copper on the pure Zinc, and thes e ratios of Aluminum were : (10% , 20% , 30% , 40 % , 50%) to demonstrate the effect of adding Aluminum to Zinc metal on solar energy absorbing , and ratios of copper were : (20% , 40%) , as well as we prepare two pure zinc samples with 99.2% of purity , one was rapidly cooled and the other slowly cooled , to demonstrate the effect of heat treatment on solar energy absorbing . In order to measure the solar energy absorbing for prepared samples , we manufactured a device depends on the methods of heat exchange between solar radiation and the surface exposed to radiation . The obtained results showed that adding Aluminum and Copper to the pure Zinc caused a decrease in solar energy absorbing . As well as increasing the percentages of adding Aluminum and Copper to the pure Zinc caused a gradually decrease in solar energy absorbing . comparing the absorbing of pure zinc samples, one was rapidly cooled and the other slowly cooled , the results showed that the sample was rapidly cooled was better than the sample slowly cooled on solar energy absorbing .
A Lie algebra g over a field F is a vector space together with a bilinear map [ , ] satisfying [x ,x ] = 0 in addition to Jacobi identity . A Lie subalgebra B of a Lie algebra g is said to be a Cartan subalgebra if it is a nilpotent and equals its normalizer, and it is proved that semi simple Lie algebra g decomposes into weight spaces for B. In this scientific paper we present the conception of distinguished element 0 h in finite dimensional semi simple Lie algebra over a field F has characteristic 0 and we will prove that the previous decomposition g into weight spaces for B is the same to decomposition g as a direct sum of h0 ad eigen spaces. This leads us to construct algorithm to test simple Lie algebras. We programmed the previous algorithm to test simple linear Lie algebras over a numeral field by Mathematica 5.0 program where applied this algorithm on semi simple linear Lie algebra SL(3, ) to prove that it is simple.
This study was conducted in Syria Street, which connects between Yemen Square and Republic Square in Latakia City. This paper cares to analyze arboreal rows in SYRIA Street and to study their relation with the service and structural engineering com ponents Of that street . Moreover, the ideal state of these street trees was evaluated .Results of this paper revealed, that the arboreal rows contain two botanic species (Ficus nitida L, Jacaranda mimosaefolia Don.), which served to furnish the street with monotonic beauty and humility in botanic diversity,and prominent breaks in these rows. Findings showed an ideal decrease in the value of the two used botanic species where (Ficus nitidia) attained a mark of 6.8/10 and (Jacaranda mimosaefolia) 6.34/10 . Corresponding to the relation of trees to some street engineering elements, results indicated inobservance of standard dimensions between planted trees and service elements. which negatively influenced the aesthetic and position value of buildings’ and stores’ facets and guiding signs and billboards on the one hand, and risk increase on pedestrians and vehicles due to blocking vision of traffic signs and overlap of tree crowns with electricity and lighting posts on the other hand.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا