Do you want to publish a course? Click here

Developing a Hybrid Technique for Dynamic Power Management in multicore processors

تطوير تقنية هجينة للإدارة الديناميكية للطاقة في المعالجات متعددة النوى

1473   0   17   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Recent technological advances have greatly improved the performance and features of computers and mobile systems. This improvements leads to increase in power consumption which makes the task of managing their power consumption necessary. The processor considered as one of the most power consuming elements in the system so, this research aims to develop a new method for power management in multicore architecture which support most of the modern electronics. Power management techniques is an important field in multicore studies because it must balance between the demanding needs for higher performance/throughput and the impact of aggressive power consumption and negative thermal effects. Many techniques have been proposed in this research like (Dynamic Voltage and Frequency Scaling (DVFS), Asymmetric cores, Thread motion, variable size cores, core fusion) then after we summarized comparing table which clarifies the pros and cons of these techniques, we proposed a new technique for power management in multi-core processors implements the best of these techniques .

References used
World Economic Forum. The Global Information Technology Report 2015
Moore Gordon E. Cramming more components onto integrated circuits, vol. 12; 1965
Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang. The case for a single-chip multiprocessor. ACM Sigplan Notices 1996
rate research

Read More

This paper presents parallel computers architectures especially Superscalar processors and Vector processors, building a simulator depending on the basic characteristics for each architecture, the simulator simulates their mechanism of work progra mmatically at the aim of comparing the performance of the two architectures in executing Data Level Parallelism (DLP) and Instruction Level Parallelism ILP. The results shows that the effectiveness of executing instructions in parallel depends significantly on choosing the appropriate architecture for execution, according to the type of parallelism that can be applied to instructions, and the vector features in the vector architecture achieve remarkable improvement in performance that cannot be ignored in execution of DLP, simplify the code and reduce the number of instruction. The provided simulator is a good core that can be developed and modified especially in the field of education for the students of Computer Science and Engineering and the research field.
In the Multi-objective Traveling Salesman Problem (moTSP) simultaneous optimization of more than one objective functions is required. This paper proposes hybrid algorithm to solve the multiobjectives Traveling Salesman problem through the integration of the ant colony optimization algorithm with the Genetic algorithm.
Precise point positioning technique uses recursive algorithms to solve the navigation problem. In fact, traditional least square method doesn’t meet the requiredassessments of processing speed, and quality in different geodetic and surveying applic ations,due tobig amount of output processing data provided by global navigation satellite systems. Extended Kalman filter is considered as optimal solution approach of the navigation problem. This filter requiresthe knowledge of measurements, its observational models, and physical state for estimation problem like: (receiver dynamic, received signals characters, and suitable estimation of its initial conditions). Research refers to a mathematical suggestion, which reduce the negative effect of convergence time at EKF initial conditions. This work also shows how a position estimation accuracy affected by the suggested modification of using EKF in PPP, and supporting the use ofthis modification in position estimation field, in spite of increasing processing time.
Keeping the voltage within the required limits is one of the key issues of operating a power system. since the voltage in electrical power system is affected significantly by changes of loads and equivalent circuit of the power system, there is a ne ed to regulate the voltage with high control ability. Because of the growing use of FACTS in General and STATCOM among them in power systems to improve voltage stability, and because of the need for software that is not always available, the aim of research is to develop a mathematical model, algorithm and software for load flow analysis at the steady state of power system includes static synchronous compensator STATCOM. The Jacobian matrix in the Newton –Raphson algorithm, which is the relationship between voltage and power mismatches, is extended with the STATCOM variables to adjust the voltage and control of the reactive power witch is injected or absorbed at the point of common coupling, with high controlability. A Complete software has been developed that includes comprehensive control facilities and exhibits very strong convergence characteristics. A Sophisticated algorithm has been verified and the effectiveness of the program is tested by its application to a number of standard power systems including the IEEE 5-bus system, and Syrian transmission network 400 kV.
with different frequency make Voltage Source Converter - HVDC link (VSC-HVDC links) an attractive technology for most power transport in meshed grids. Advantages are the high controllability of active and reactive power at the converter’s terminals and the ability to increase the stability of the surrounding AC system. VSC-HVDC can provide active and reactive control to achieve maximum power transfer, system stability and improve power quality and reliability. This research aims to develop a mathematical model and an algorithm for the analysis of power flow in a steady state of power system containing VSC-HVDC.The Jacobian matrix inNewton- Raphsonalgorithm, which is the relationship between voltage and power mismatches, is extended with the VSC HVDC variablesto control active and reactive powers and voltage magnitude in any combination. A Newton-Raphson load flow program has been developed which includes comprehensive control facilities and exhibits very strong convergence characteristics. Two scenarios have been studied, back-to-back VSC-HVDC link and full VSC-HVDC link connecting two buses in AC networks. The algorithm and the program have been verified through a number of simulation examples carried out on IEEE 14-bus System.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا